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Preface

The 5th International Workshop on Information Security Applications (WISA
2004) was held in Jeju Island, Korea during August 23-25, 2004. The workshop
was sponsored by the Korea Institute of Information Security and Cryptology
(KIISC), the Electronics and Telecommunications Research Institute (ETRI)
and the Ministry of Information and Communication (MIC).

The aim of the workshop is to serve as a forum for new conceptual and ex-
perimental research results in the area of information security applications from
the academic community as well as from the industry. The workshop program
covers a wide range of security aspects including cryptography, cryptanalysis,
network/system security and implementation aspects.

The program committee received 169 papers from 22 countries, and accepted
37 papers for a full presentation track and 30 papers for a short presentation
track. Each paper was carefully evaluated through peer-review by at least three
members of the program committee. This volume contains revised versions of 36
papers accepted and presented in the full presentation track. Short papers were
only published in the WISA 2004 pre-proceedings as preliminary versions and
are allowed to be published elsewhere as extended versions.

In addition to the contributed papers, Professors Gene Tsudik and Ross
Anderson gave invited talks, entitled Security in Outsourced Databases and What
does ‘Security’ mean for Ubiquitous Applications?, respectively.

Many people have helped and worked hard to make WISA 2004 success-
ful. We would like to thank all the people involved in the technical program
and in organizing the workshop. We are very grateful to the program commit-
tee members and the external referees for their time and efforts in reviewing
the submissions and selecting the accepted papers. We also express our special
thanks to the organizing committee members for making the workshop possible.
Finally, we would like to thank all the authors of the submitted papers and the
invited speakers for enabling an interesting workshop program.

December 2004 Chae Hoon Lim
Moti Yung
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Impacts of Security Protocols 
on Real-Time Multimedia Communications* 

Kihun Hong1, Souhwan Jung1, Luigi Lo Iacono2, and Christoph Ruland2 

1 School of Electronic Engineering, Soongsil University, 1-1, Sangdo-dong,  
Dongjak-ku, Seoul 156-743, Korea 

kihun@cns.ssu.ac.kr, souhwanj@ssu.ac.kr 
2 Institute for Data Communications Systems, University of Siegen, Germany 

{lo_iacono,ruland}@nue.et-inf.uni-siegen.de 

Abstract. International Standards Committees like ITU and IETF have pro-
duced several security protocols for real-time multimedia communications. But, 
applying those security mechanisms may results in non-trivial degradation to 
real-time communications. This paper investigates the impacts of the standard 
security protocols on the delay, packet overhead, quality of service, and other 
features of real-time communications. Some of analytical and experimental re-
sults show the suitability of the security protocols. 

1   Introduction 

Emerging Internet applications transmit multimedia content more broadly. Some 
examples of existing multimedia applications are audio and video conferencing sys-
tems, media on demand and pay per view services, groupware for distributed collabo-
rative working and Internet gaming. Internet multimedia communication is character-
ized by two different communication paths: one is used to exchange signaling data 
and the other serves for the transport of the media streams. The transport channels 
between the multimedia endpoints are established by the signaling path. Available 
signaling standards are the H.323 [1] components H.225.0 [2] and H.245 [3] of the 
ITU-T and SIP [4] and RTSP [5] of the IETF. H.323 and SIP are mainly used in IP 
telephony environments whereas RTSP focuses on media on demand services. The 
transport path supports the data stream transmission. Since the transmitted data has 
real-time properties, QoS aspects like delay, packet loss and jitter have to be consid-
ered. The reason e.g. why media streams are using the transport services provided by 
UDP instead of the ones offered by TCP is that the reliability and congestion avoid-
ing mechanisms of TCP cause uncertain delay. Security for Internet multimedia 
communication has to consider both paths, whereas the signaling path does not de-
mand for additional requirements than conventional Internet applications. The trans-
port path instead does demand for additional requirements. The integration of security 
services into the media stream transmission has certainly an impact on these parame-
ters. 

                                                           
*  This work was supported by Korea Research Foundation Grant (KRF-2001-042-E00045). 
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In this paper we examine different security mechanisms suitable for real-time-
oriented IP communication by focusing on the influences on the QoS. First we intro-
duce available standards. Afterwards a list of criteria is presented which is the basis 
for our investigations and evaluations. In section 3 we present our results concluding 
what can be realized with the existing approaches and which problems are still open. 
In section 4 we describe our implementations and make the performance comparison 
of some security protocols based on communication overhead and error propagation. 
The results of our investigations are concluded in section 5. 

2   Security Standards for Multimedia Communication 

Different approaches exist to secure multimedia. IPsec as IP-level security protocol is 
one possible candidate. SSL/TLS relies on TCP and is therefore not suitable for se-
curing UDP-based multimedia communication. Two more security mechanisms resid-
ing at the application layer are the standards H.235 [8] and SRTP [9]. H.235 is part of 
the umbrella standard H.323 of the ITU-T. SRTP is currently a RFC standard devel-
oped within the IETF. 

2.1   IPsec 

IPsec [6] is standardized within the IETF and provides security services for the Inter-
net Protocol. It is mandatory for IPv6 and optional for IPv4. IPsec offers two security 
protocols, which can be used independently: 

• Encapsulating Security Payload (ESP)  
The ESP provides the security services data confidentiality, integrity, anti-replay 
service, and limited traffic flow confidentiality. 

• Authentication Header (AH)  
The security services provided by AH are integrity, and anti-replay service. 

IPsec can be used to encrypt the media stream (IPsec in transport mode). Within 
H.323 the H.245 capability exchange messages indicate the support of IPsec. When a 
media channel is opened the logical channel procedures signals the use of IPsec. 
Another possibility is to establish a secure channel between two security gateways 
(IPsec in tunnel mode). In this case the multimedia application is not aware of the SA 
and therefore no specific signaling is needed. The signaling path (RAS, H.225.0, 
H.245, SIP, RTSP) can also be secured by IPsec. 

2.2   H.235 

H.323 [1] comprises a multitude of ITU-T standards with regard to multimedia com-
munication. That makes it a so called umbrella standard. Not only signaling protocols 
(e.g. H.245, H.225.0) are part of H.323 but also codecs (e.g. G.711, H.261), transport 
protocols (RTP) and so forth. Finally the H.235 [8] standard describes security ser-
vices for H.323. H.235 considers security services for both the signaling messages 
(RAS, H.225.0, and H.245) and the media stream (RTP) transmission. Among the 
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provided security services usually more than one mechanism or algorithm can be 
used to achieve a security service. This flexibility can result in non-interoperable 
implementations. Therefore the ITU-T has specified two security profiles which 
mandate certain mechanisms and algorithms: 

• Baseline Security Profile   
The baseline security profile provides message authentication/integrity for the 
signaling path. An option of the baseline security profile is the voice encryption 
profile, which offers media stream encryption. 

• Signature Security Profile   
The signature security profile is suggested as an option suited for large environ-
ments where the mutual password or symmetric key assignment is not feasible. 
The signature security profile provides authentication, integrity, and non-
repudiation for the signaling messages by using digital signatures. This profile can 
be used in conjunction with the Baseline Security Profile. 

H.235 enables furthermore a so called media anti-spamming to detect flooding at-
tacks. 

2.3   SRTP 

The Real-time Transport Protocol (RTP) [11] is the most widely used  protocol for 
real-time data. Nearly every Internet multimedia application relies on RTP to pack-
etize the data output by the codecs. RTP itself doesn’t provide security mechanisms 
except the encryption of the packet payload. The Secure RTP (SRTP) [9] instead 
provides confidentiality and authentication for RTP as well as for RTCP. Furthermore 
a protection against replay attacks is included. SRTP is defined as a profile of RTP 
according to the Audio Video Profiles (AVP) [12] and is registered as "RTP/SAVP". 

The encryption of SRTP or SRTCP packets is optional whereas the authentication 
for RTCP is mandatory but optional for RTP. 

3   Comparing Criteria 

3.1   Provided Security Services 

3.1.1   Scope of Protection 
IPsec provides authentication of the IP payload and parts of the IP header and encryp-
tion of the IP payload. All layers above benefit by IPsec security services. H.235 
considers confidentiality and anti-spamming for RTP only. SRTP offers confidential-
ity, and message authentication and protection against replay-attacks for RTP and 
RTCP.  

3.1.2   Confidentiality 
The Encapsulating Security Payload (ESP) of IPsec provides confidentiality for IP 
datagrams. The format is designed to support a variety of encryption algorithms. The 
only mandatory cipher is DES operated in the cipher block chaining (CBC) [15] 
mode. 
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To encipher RTP packets, H.235 uses following algorithms in CBC-Mode: RC2, 
DES, and 3DES. 

To encrypt the payload of RTP packets in SRTP a pseudorandom keystream is 
generated, which is XORed with the payload. AES [14] in Segmented Integer 
Counter (SIC) mode [15, 16, 17] is the default encryption scheme used to generate 
the keystream. AES in f8 mode [18] is defined additionally. Both modes operate the 
block cipher in encryption mode only SRTP is extensible to any other transform. 

3.1.3   Data Integrity and Message Authentication 
To increase the usability of the statistical values provided by RTCP reports it is very 
important to ensure the integrity of those values like inter-arrival jitter and packet loss 
rate. The authenticity of control messages like e.g. the BYE packet is even more im-
portant. Therefore message authentication and data integrity is not renounceable. 
Since real-time multimedia systems require a minimal latency of the media packets, 
in case of bit errors and lossy encoding in RTP payload, it is more useful to use the 
damaged data than to discard it as unauthentic instead of retransmission. But it is hard 
to find a difference between forged contents and simple bit errors. 

The security protocol AH within IPSec provides data integrity and message au-
thentication for IP packets. The message authentication is based on the use of Mes-
sage Authentication Codes (MAC). The AH must support two MAC algorithms: 
HMAC/MD5 (96 bit) and HMAC/SHA-1 (96 bit) [19]. The MAC is calculated over 
IP header fields that don’t change during transmission and payload. 

Integrity of RTP and RTCP streams in H.235 is for further study. If an attacker 
modifies RTP payloads, the receiver decrypts the encrypted portion of the packet and 
processes the payload using the media codec whether the packet was modified or not. 
The anti-spamming mechanism described in section 3.1.6 provides a light-weighted 
RTP packet authentication. 

The authenticated portion of a SRTP packet consists of the RTP header followed 
by the (encrypted) payload of the SRTP packet. Thus, if the header or the payload is 
modified, SRTP discards the packet. HMAC/SHA-1 [19] is the default algorithm for 
providing integrity and message authentication in SRTP. The problem of 
HMAC/SHA-1 is the fixed and large size of the MAC (20 octets). In SRTP it is trun-
cated to the leftmost 32 bit. [19] mentions, that a truncation to less than the half of the 
generated output of the HMAC increases the possibility to attack the MAC because of 
the birthday-attack-bound. SRTP doesn’t mandate the MAC to 32 bit. Alternatively 
other MAC algorithms can be used. 

3.1.4   Packet Source Authentication and User Authentication 
All of the schemes don’t provide a method for packet source authentication. None of 
the analyzed security protocols has a mechanism to provide source authentication in 
Multicast configurations. Several schemes have been published and suggested to 
overcome this problem [20, 21, 22, 23], but without success of standardization. 

User authentication in IPsec relies on the main mode of the IKE protocol using 
digital signatures. Though IPsec supports several authentication manners like pre-
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shared key authentication and public-key encryption, these don’t support perfect user 
authentication. 

Authentication in H.235 is accomplished by the utilization of pre-shared secrets. 
This may be a static password or some other a priori piece of information. The usage 
of digital certificates is possible. 

As in IPsec the user authentication in SRTP depends on a separate protocol. Typi-
cal tasks are the negotiation of cryptographic parameters, the mutual authentication, 
and exchange of session keys and establishment of a security session. For this pur-
pose the Multimedia Internet Keying (MIKEY) [24] protocol is proposed but any 
other suitable protocols can be applied. 

3.1.5   Replay Protection 
The AH in IPsec guards against replay attacks. This is realized by maintaining a re-
play list on the receiver-side, which conceptually contains the indices of all received 
authenticated packets. In practice, the list can use a sliding window approach, so that 
a fixed amount of storage suffices for replay protection. 

In case of H.235 the receiver does not check the index of an incoming packet 
against a replay list. Replay protection in H.235 is for further study. 

The authentication of the RTP header and payload in SRTP indirectly provides re-
play protection by authenticating the sequence number. In fact anti-replay is only 
possible when integrity protection is present. When message authentication is en-
abled, SRTP protects against such an attack through a replay list corresponding to the 
one used in IPsec. 

3.1.6   DoS Protection 
IPsec and SRTP have no countermeasure against message flooding. 

H.235 defines a media anti-spamming mechanism. The sender calculates a MAC 
over the first block of the RTP header and appends it to the RTP packet. The receiver 
determines quickly whether a RTP packet stems from an unauthorized source. This 
can also be seen as light-weighted packet authentication. 

The techniques used within IPsec and SRTP to provide message authentication are 
very equivalent to the described media anti-spamming in H.235. The only difference 
is the amount of data being input into MAC calculation and verification.  

3.1.7   Key Management 
IPsec uses the Internet Key Exchange (IKE) [10] protocol for key establishment. 
Main Mode and Quick Mode are the two phases used to set up an authenticated key. 
In Main Mode the two communication parties authenticate each other and establish a 
secure channel which is used by the Quick Mode protocol to exchange the session 
keys and to establish the Security Associations (SA). There are four different authen-
tication methods specified: digital signatures, two forms of authentication with public 
key encryption, and pre-shared keys. The Quick Mode is used to establish SAs for 
other security services, such as AH and ESP. SAs are unidirectional. To secure one 
RTP-media channel three different SAs are needed on every endpoint (one for the 
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unidirectional RTP-stream and two for the bi-directional RTCP-stream). If anti-replay 
is enabled, the transmitted sequence number must be unique. After transmission of 
the 232th packet, the sender’s and receiver’s counter must be reset by establishing a 
new SA. The notion of rekeying an SA in IPsec actually implies the new SA. 

In case of H.235, the master chooses a random session key. The transport of ses-
sion keys from the master to the slave in a secure manner can be done by using one of 
following possibilities: 

1. If the H.245 signaling channel is already confidential, no additional encryption of 
the session key is necessary. The connection procedures indicate a secure mode of 
operation, the negotiated handshake and authentication shall occur for the H.245 
logical channel before any other H.245 messages are exchanged. After completing 
the securing of the H.245 channel, the terminals use the H.245 protocol in the 
same manner that they would in an insecure mode. 

2. If a secret key and algorithm has been established outside the H.245 channel 
(through an outband channel), the shared secret is used to encrypt the session key 
material. The enciphered key is included into the H.245 messages. 

3. The session key is encrypted by using the public key of the slave. Certificates may 
be used when the H.245 channel is not secure, but may also be used in addition to 
the secure H.245 channel. 

In H.235 the key refresh rate shall be such that no more than 232 packets are en-
crypted using the same key. Implementations should refresh keys after encrypting 230 
packets using the same key. Both parties are free to change the media session key as 
often as considered necessary due to their security policy. The master distributes e.g. 
new session keys or the slave requests new session keys from the master. 

SRTP does not define any key establishment protocol. It just describes how to de-
rive the necessary session keys for encryption and authentication from the master 
keys. SRTP uses a key derivation mechanism that minimizes the signaling traffic 
between the communication parties. In fact there is no data exchange or signaling 
necessary to establish new session keys. The session keys are generated involving a 
key derivation function by every endpoint on its own. The function gets four input 
values: the master key, the master salt key, the SRTP packet index and a label. The 
master key and the master salt key are provided by an external key management sys-
tem. They are used to secure both protocols SRTP and SRTCP. The label denotes 
which kind of session key should be derived. The SRTP packet index is generated out 
of the first RTP/RTCP packet the key will be applied to. The key derivation rate de-
fines the rate in which new keys will be generated. It is a 16 bit value. If this value is 
set to zero only the mandatory initial session key derivation will be executed (at the 
beginning of the session). The generated session keys will then be used without any 
rekeying in the future, except the absolute allowed maximum usage for SRTP-keys in 
general. This maximum value is determined by the maximum value of the SRTP-
index (for RTP 248-1 and for RTCP 231-1). If the value is greater than zero, the keys 
will be refreshed after the defined number of packets. 
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3.2   Data Expansion 

VoIP systems generally transport one or two codec frames per packet. In case of the 
G.723.1 codec, one frame consists of 20 or 24 octets and contains 30 msec of speech. 
Figure 1 shows a typical voice packet consisting of one frame of 20 octets. 

IPsec uses ESP for encrypting payload data. The ESP format consists of SPI, se-
quence number, payload data, padding, pad length, next header, and optional authen-
tication data. 

In H.235 the PKCS #7 [25] padding is used to obtain a multiple of  cipher blocks. 
If the ciphertext stealing [26] in CBC mode is employed instead, then the encrypted 
portion has the exact size of the plaintext. In addition the media anti-spamming 
mechanism introduces a data expansion due to the appending of a MAC. 

SRTP adds two new fields to the packet format as defined in RFC 1889. The SRTP 
Master Key Identifier (MKI) and the authentication tag are both optional fields with 
variable length. The MKI identifies the master key used to encrypt and/or authenti-
cate the packet. The authentication tag is only present when the RTP packet is integ-
rity protected. The same applies to SRTCP packets. Beside the MKI and the authenti-
cation tag SRTCP contains two more additional fields: a 1 bit E-flag indicating 
whether the payload is encrypted or not and the SRTCP index, which is a 31 bit 
counter for the SRTCP packets.  
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Fig. 1. Data Expansion added by Security Protocols 

Both fields are required. Through the use of the keystream generator no padding is 
required and therefore the data size of the encrypted payload must not be padded. 
While the whole RTP packet is being authenticated, only the payload of the packet 
will be encrypted. This ensures the usage of header compression described in [27]. 
Both H.235 and SRTP enable the use of IP/UDP/RTP header compression. 
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3.3   Error Propagation 

In case of CBC a transmission error affects two plaintext blocks. Suggest that one 
RTP packet has two frames (24 octets per frame) and the encryption algorithm has a 
blocksize of 16 octets. If one bit error occurs in the first cipher block on transmission, 
the receiver looses the first frame and 8 octets of the second frame after decryption. 

In case of SRTP, the process of encrypting a packet by XORing with the key-
stream causes no error propagation occurs. 

In all cases error propagation is limited to the corrupted packet. 

3.4   Computational Delay 

IPsec introduces additional delay due to en-/decryption and MAC generation/verifi- 
cation. 

Sender-side: 
$IPsec computation delay = Enc(UDP header||RTP header||RTP payload) +  

GenMAC(ESP header||UDP header||RTP header||RTP payload) 
Receiver-side: 
IPsec computation delay = Dec(UDP header||RTP header||RTP payload) + 

VerMAC(ESP header||UDP header||RTP header||RTP payload) 

H.235 encrypts and decrypts the payload of each RTP packet. It furthermore calcu-
lates and verifies a MAC on a small portion of the RTP header. 

Sender-side: 
H.235 computation delay = Enc(RTP payload) + GenMAC(RTP header) 
Receiver-side: 
H.235 computation delay = Dec(RTP payload) + VerMAC(RTP header) 

The process of encrypting/decrypting a packet in SRTP consists of XORing that 
keystream. In addition a MAC is calculated over the RTP header and the (encrypted) 
RTP payload. 

Sender-side: 
SRTP computation delay = Enc(RTP payload) + GenMAC(RTP header || RTP pay-
load) 
Receiver-side: 
SRTP computation delay = Dec(RTP payload) + VerMAC(RTP header || RTP pay-
load) 

3.5   Supported Signaling Standards 

Since IPsec resides on the network layer, it is transparent to applications. 
H.235 is one standard incorporated by the umbrella standard H.323 and is there-

fore used within H.323-based applications. 
SRTP is intended to be used within SIP or RTSP-based applications. 
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3.6   Multicast Support 

IPsec supports multicast communication but IKE provides only the establishment of 
SAs between two hosts the key management. 

H.235 doesn’t consider multicast environments. Multipoint conferences are real-
ized using a so called Multipoint Controller (MC) or Multipoint Controller Unit 
(MCU). Privacy for individual sources within a common session (assuming Multi-
cast) may be achieved with individual or common keys. These two modes may be 
arbitrarily chosen by the MC(U) and shall not be controllable from any particular 
endpoint except in modes allowed by MC(U) policy. In other words, a common key 
may be used across multiple logical channels as opened from different sources. 

SRTP considers multicast environments. A suitable key management protocol for 
this purpose has to be selected. 

3.7   Packetfilter Support 

Since multimedia communication is secured end-to-end, the usage of IPsec prevents 
packet filtering. Packet-filter on the path from the sender to the receiver is not able to 
decrypt the IPsec secured payload to analyze addresses and ports. 

H.235 and SRTP do not affect packet filtering since the encryption takes place at 
OSI layer 7. 

3.8   Summary 

The following table summarizes the comparison of IPsec, H.235, and SRTP: 

Table 1. Summary of Properties 

 IPsec H.235 SRTP 
Key management � � � 

User Authentication � � � 

Integrity of RTP payload � � � 

RTCP Protection � � � 

Pre-computation � � � 

Error Propagation � � � 

Data Size Expansion � 
(High) 

� 
(Medium) 

� 
(Low) 

4   Implementation 

To examine the results we implemented H.235 and SRTP based on the openH323 
project (http://www.openh323.org/). The openH323 project aim is to create a full 
featured, interoperable, open source implementation of the ITU-T H.323 teleconfer-
encing protocol. 
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4.1   H.235 and SRTP 

Currently openH323 supports H.235 for securing RAS messages but doesn’t support 
security functions for H.225.0, H.245, and RTP. We extended the H.225.0 and H.245 
signaling implementations and added the missing security fields and structures such 
as CryptoToken, ClearToken, and H.235Key. Voice encryption takes place 
between the codec and the RTP packet construction. All encryption algorithms as 
stated in H.235 Annex D were integrated. 

The SRTP framework is considered as a bump in the stack implementation, which 
resides between the RTP application and the transport layer. We integrated our SRTP 
framework into the openH323 project and extended the OpenPhone application - a 
graphical H.323 client for Microsoft Windows operating systems - to support SRTP 
sessions. With this application it is possible to set up voice and video communica-
tions between two endpoints. 

4.2   Delay Time 

Upon our implementations we made measures to get a meaning about how many 
delay is introduced by H.235 and SRTP due to the cryptographic transforms and - if 
necessary - how the QoS-Parameters have to be adapted. Since both investigated 
protocols make only use of symmetric cryptography, the additional delay is kept 
reasonable. Table 2 shows some results collected on an Intel Pentium II system with 
350 MHz clock, 128 MB RAM and the MS Windows 2000 operating system. 

SRTP adds a total of 0.6 ms to the end-to-end delay when applied to a VoIP -
application using the GSM codec (1 Frame per RTP packet) and the default algo-
rithms (AES/SIC, HMAC/SHA-1). 

Table 2. Measurement Results of delay time 

Cryptographic 
Transform 

GSM-1 
(33 octets) 

GSM-4 
(132 octets) 

G.711-1 
(240 octets) 

G.711-5 
(1200 octets) 

AES/SIC Enc: 0.08 ms 
Dec: 0.08 ms 

Enc: 0.12 ms 
Dec: 0.12 ms 

Enc: 0.16 ms 
Dec: 0.16 ms 

Enc: 0.52 ms 
Dec: 0.52 ms 

AES/f8 Enc: 0.11 ms 
Dec: 0.11 ms 

Enc: 0.16 ms 
Dec: 0.16 ms 

Enc: 0.18 ms 
Dec: 0.18 ms 

Enc: 0.52 ms 
Dec: 0.52 ms 

3DES/CBC Enc: 0.48 ms 
Dec: 0.48 ms 

Enc: 0.80 ms 
Dec: 0.80 ms 

Enc: 0.94 ms 
Dec: 0.94 ms 

Enc: 2.5 ms 
Dec: 2.5 ms 

HMAC/MD5 Gen: 0.09 ms 
Ver: 0.09 ms 

Gen: 0.11 ms 
Ver: 0.12 ms 

Gen: 0.15 ms 
Ver: 0.15 ms 

Gen: 0.27 ms 
Ver: 0.28 ms 

HMAC/SHA-1 Gen: 0.21 ms 
Ver: 0.23 ms 

Gen: 0.27 ms 
Ver: 0.29 ms 

Gen: 0.30 ms 
Ver: 0.31 ms 

Gen: 0.55 ms 
Ver: 0.55 ms 

4.3   Communication Overhead and Error Propagation Comparison 

We show communication overhead of multimedia packet for a normal IP packet and 
the three security protocols-IPsec, H.235, and SRTP using a simulation. Figure 2 
shows the percent of communication overhead when packet size is from 40 bytes to 
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500 bytes. H.235 and SRTP have almost same extension if they use the same MAC 
algorithm. However, since H.235 uses the block encryption algorithm and requires 
padding, it sometimes has more communication overhead. IPsec has the most com-
munication overhead among security protocols, because it always requires ESP 
header for the confidentiality service. 

  

Fig. 2. Communication overheads versus payload size 

We also show error propagation for the three security protocols-IPsec, H.235, and 
SRTP using a simulation. We performed simulation with 1,000,000 sample packet 
and use a 40 bytes payload consisting of 2 frame of G.723.1. The block size of en-
cryption algorithm is 8 bytes. The error position of packet is random. H.235 and IP-
sec usually use CBC mode, which cause error propagation in the next block. If two 
error blocks include parts of two codec frames, the two codec is corrupt. Figure 3 
shows the change in the number of corrupt frames for the three security protocols 

 

Fig. 3. Corrupt frames versus Packet error probability 
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versus the packet error probability. The asterisk markers represent the number of 
corrupt frames of SRTP, which increases in proportion to a rise in packet error prob-
ability. The square markers represent corrupt frames of IPsec and the point markers 
represent corrupt frames of H.235. In these cases, the number of corrupt frames in-
creases faster than SRTP because of the error propagation. 

5   Conclusions 

We analyzed existing security protocols for their usability in Internet multimedia 
communications and investigated their impact on quality of service. All three investi-
gated protocols provide security services for Internet multimedia communication. In 
case of H.235 the offered security for the media stream is incomplete. RTP has no 
mechanisms to detect manipulations in the payload and in some fields of the header. 
Furthermore the protection of RTCP is left out completely. That makes H.235 very 
vulnerable to a variety of attacks. Even worse is that the voice encryption profile is 
optional and must not be part of a H.235 implementation. IPsec instead protects both 
protocols but causes some overhead that influences QoS parameters. Especially the 
introduced data expansion results in an increasing demand of transmission rates. The 
end-to-end delay is also affected the most by IPsec since the amount of data which 
has to be encrypted is multiple higher then the RTP payload size. Moreover the end-
to-end application of IPsec causes problems with intermediate packet-filtering. Fi-
nally IKE is a very complex protocol and often the reason for interoperability prob-
lems between different IPsec implementations. Nearly every multimedia application 
relies on RTP to packetize the data outputted by the various codecs before sending 
them. Therefore by defining security services for RTP every real-time-oriented com-
munication application can benefit from them. This is the goal of the SRTP. SRTP 
defines optimized security functions as integrity of RTP payload, RTCP protection, 
pre-computation, and low communication overhead for real-time multimedia applica-
tion using RTP. Besides the concepts and mechanisms incorporated in SRTP aim to a 
heterogeneous environment of IP-based communication devices. This scope contains 
mobile devices, as well as modern PCs. Mobile devices constitute special require-
ments to the used algorithms and implementations. They don’t have so much compu-
tational power and less memory than PCs. Therefore SRTP uses modern and efficient 
cryptographic algorithms for confidentiality and integrity. The specified modes of 
operation enable to previously produce keystream segments using the packet index of 
upcoming packets. 

References 

1. ITU-T Recommendation H.323 Version 4: Packet Based Multimedia Communication Sys-
tems (2000) 

2. ITU-T Recommendation H.225.0 Version 4: Call Signaling Protocols and Media Stream 
Packetization for Packet Based Multimedia Communications Systems (2000) 



Impacts of Security Protocols on Real-Time Multimedia Communications      13 

3. ITU-T Recommendation H.245 Version 7: Control Protocol for Multimedia Communica-
tion (2000) 

4. M. Handley, H. Schulzrinne, E. Schooler and J. Rosenberg: SIP: Session Initiation Proto-
col, IETF RFC 3261 (2002) 

5. H. Schulzrinne, A. Rao and R. Lanphier: Real Time Streaming Protocol (RTSP), IETF 
RFC 2326 (1998) 

6. S. Kent, R. Atkinson: Security Architecture for the Internet Protocol, IETF RFC 2401 
(1998) 

7. T. Dierks, C. Allen: The TLS Protocol Version 1.0, IETF RFC 2246 (1999) 
8. ITU-T Recommendation H.235 Version 2: Security and encryption for H-Series (H.323 

and other H.245-based) mulitmedia terminals (2000) 
9. M. Baugher, D. McGrew, D. Oran, R. Blom, E. Carrara, M. Naslund, and K. Norrman: The 

Secure Real-time Transport Protocol, IETF RFC 3711 (2004) 
10. D. Harkins, D. Carrel: The Internet Key Exchange (IKE), IETF RFC 2409 (1998) 
11. H. Schulzrinne, S. Casner, R. Frederik, and V. Jacobson: RTP: A Transport Protocol for 

Real-Time Applications, IETF RFC 1889 (1996) 
12. H. Schulzrinne: RTP Profile for Audio and Video Conferences with Minimal Control. IETF 

RFC 1890 (1996) 
13. L. Lo Iacono, C. Ruland: Confidential Multimedia Communication in IP Networks, Pro-

ceedings of 8th IEEE International Conference on Communication Systems, Singapur 
(2002) 

14. NIST: Advanced Encryption Standard (AES), FIPS PUB 197 (2001) 
15. ISO/IEC 10116: Information technology - Security techniques - Modes of operation for an 

n-bit blockcipher, International Organization for Standardization (1997) 
16. D. McGrew: Segmented Integer Counter Mode: Specification and Rationale, Cisco Sys-

tems, Inc. (2000) 
17. W. Diffie, M. Hellman: Privacy and Authentication: An Introduction to Cryptography. In 

Proceedings of the IEEE, 67(3) (1979) 397-427 
18. Technical Specification Group Services and System Aspects: Specification of the 3GPP 

Confidentiality and Integrity Algorithms, 3rd Generation Partnership Project (3GPP), 
Technical Specification, Document 1: f8 and f9 Specification (2001) 

19. H. Krawczyk, M. Bellare, R. Canetti: HMAC: Keyed-Hashing for Message Authentication, 
IETF RFC 2104 (1997) 

20. R. Gennaro, P. Rohatgi: How to Sign Digital Streams, Advances in Cryptology – 
CRYPTO ‘97 (1997) 180-197 

21. A. Perrig, R. Canetti, B. Briscoe, J. Tygar, D. X. Song: TESLA: Multicast Source 
Authentication Transform, IETF Internet Draft (Work in progress) (2000) 

22. A. Perrig, R. Canetti, J. D. Tygar, and D. X. Song: Efficient Authentication and Signing of 
Multicast Streams over Lossy Channels, IEEE Symposium on Security and Privacy (2000) 
56-73 

23. C. Ruland, N. Schweitzer, L. Lo Iacono: Signing Digital Streams, Proceedings of the 4th 
International ITG Conference on Source and Channel Coding, VDE-Verlag Berlin (2002) 

24. J. Arkko, E. Carrara, F. Lindholm, M. Naslund, and K. Norrman: MIKEY: Multimedia 
Internet KEYing, IETF RFC 3830 (2004) 

25. RSA Security: PKCS #7: Cryptographic Message Syntax Standard, Version 1.5, Revised 
November 1 (1993) 

26. J. Daeman: Cipher and Hash Function Design, Ph.D. Thesis, Katholieke Universiteit Leu-
ven (1995) 

27. T. Koren, S. Casner, J. Geevarghese, B. Thonpson, and P. Ruddy: Enhanced Compressed 
RTP (CRTP) for links with high delay, packet loss and reordering, IETF RFC 3545 (2003) 



C.H. Lim and M. Yung (Eds.): WISA 2004, LNCS 3325, pp. 14–26, 2004. 
© Springer-Verlag Berlin Heidelberg 2004 

An Improvement on Privacy and Authentication in GSM* 

Young Jae Choi and Soon Ja Kim 

School of Electrical Engineering and Computer Science, Kyungpook National University, 
1370 Sangyuk-dong Buk-gu Daegu, Republic of Korea 
cyj75@hotmail.com, snjkim@ee.knu.ac.kr 

Abstract. There are a lot of subscribers of GSM across the world. GSM is one 
of the major achievements in modern cellular telephony. The authentication 
protocol for GSM has some drawbacks [1,2]. We show why drawbacks occur 
and propose an improvement on privacy and authentication in GSM not only to 
improve drawbacks but also to achieve the goals as follows: mutual authentica-
tion, reduction of bandwidth consumption between VLR and HLR, reduction of 
storage space of VLR database, reduction of authentication data flows, security 
and efficiency. In particular, we show a possible attack to threat MS’s location 
privacy. The merit of the proposed protocol is that it is based on the existing se-
curity algorithm A3, A5 and A8.  

1   Introduction 

The Global System for Mobile communication (GSM) is a common standard issued 
by European Telecommunication Standards Institute (ETSI) and is the first digital 
mobile network architecture put into practice. GSM is widespread across the world 
and has always been the standard of the Pan-European digital cellular system [9, 11]. 
GSM is undoubtedly a major achievement in modern cellular telephony. 

GSM is so convenient in that anyone can use it to communicate with anyone else 
in almost any place at any time. Because of the convenience of GSM, there are a lot 
of subscribers across the world [10]. 

The tremendous market growth of GSM system indicates the growing importance 
of mobile communication and an eminent need of security in mobile telephones dur-
ing international communication. There are two major worries about security issues 
[12,13] ; The confidentiality of radio transmission, e.g., the privacy, and the authenti-
cation of the user. Confidentiality refers to the guarantee that the communication 
messages are not intercepted by eavesdroppers. On the other hand, authentication is 
carried out to ensure that any unauthorized user cannot fraudulently obtain his/her 
required services from the home domains. In some novel applications in modern wire-
less communication, these two issues are still the major concerns  

In the data communication security framework, complete security relies on an im-
plementation of a standard method over the complete path, including wireless and 
wired paths[1]. The radio path is by nature more susceptible to be eavesdropped and 
to be fraudulent in use than wired path. 
                                                           
*  Part of this research was supported by the Korea Science and Engineering Foundation, 

R.O.K., under contract no. R05-2003-000-12083-0. 
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GSM considers that the network, except the interface of the MS and the VLR, is 
secure and all VLR/HLR are trustworthy. These are acceptable assumptions in mobile 
telephone systems, which are homogeneous, small and only provide simple services. 
However, these assumptions cannot be guaranteed in a large scale and heterogeneous 
communication system. Since GSM does not adopt ciphering mechanism between 
VLR and VLR/HLR, an eavesdropper can monitor the physical channel that connects 
to the HLR and eavesdrops MS’s location updating information and Security Related 
Information. So the data confidentiality and location privacy in wired communication 
also should be provided [8]. 

The security functions of the GSM aim at two goals. One is to protect the network 
against unauthorized access, and the other is to protect the privacy of the user. Thus, 
the security features provided by GSM consist of three aspects as follows [1,9]: 

− subscriber identity authentication 
− subscriber identity confidentiality 
− The confidentiality of user data and signaling information on radio path. 

A mobile user must prove one’s identity to access the network. Authentication pro-
tects against fraudulent uses and ensures correct billings. The subscriber identity con-
fidentiality deals with the location privacy of mobile users. The confidentiality of user 
data and signaling information depends upon many aspects of the system. Among 
them, the user’s subscription data, service profile and information were sent over open 
radio paths as well as the security parameters. It is associated with the confidentiality 
purpose [1,10]. 

The GSM has been improving in these security issues ever since. The protection 
mechanisms for mobile communication have been examined by many researchers 
[1,2,12]. Most of them offer the authentication mechanisms of the data confidentiality 
for the wireless transmission, not for the wired transmission. In order to offer the 
security for the wired path, some of them used the public key cryptography and signa-
ture scheme to improve the security. Some protocols applied for the symmetric cryp-
tography scheme e.g. DES[6,7], to achieve a more secure authentication and to in-
crease the privacy of mobile subscribers in wireless path. [3]. To equip the system 
with the high security functions, a symmetric cryptosystem or an asymmetric crypto-
system can be employed. However, in the view of mobile phone power and computa-
tional ability, the GSM system is still popular and widespread throughout the world 
because of its simplicity and efficiency [1].  

The approach of Lee et al’s modified protocols [1,2] proposed methods to reduce 
the amount of information and to eliminate the stored sensitive information in the 
VLR. They also proposed the security protection for the wireless and the wired path. 
We modify their protocols and propose an improved protocol for GSM to provide 
more efficient and secure method in authentication and location privacy. 

The contents of this paper are divided into four parts. To begin with, we investigate 
the basic architecture of GSM. Secondly, the authentication protocol of GSM, where 
inefficient security mechanisms is discussed and we propose the enhanced authentica-
tion protocol. Thirdly, we show the location privacy protocol of GSM and its short-
comings and propose a new location privacy protocol. Finally, the features of the 
proposed protocol are presented by the cryptanalysis, the comparison on the basis of 
design goals and capacity analysis, among the original GSM system and other pro-
posed approaches. 
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2   GSM System 

2.1   Notation 

The acronyms in table 1 are used. 

Table 1. Acronyms 

Acronyms Meaning 
MS Mobile Station 

HLR Home Location Register 
VLR o/n Visitor Location Register old/new 

MSC Mobile services Switching Center 
SIM Subscriber Identity Module 
ME Mobile Equipment 

IMSI International Mobile Subscriber Identity 
IMEI International Mobile Equipment Identity 

TMSI o/n Temporary Mobile Subscriber Identity old/new 
LAI Location Area Identity 
A3 Authentication Algorithm  
A5 Signaling data and user data encryption algorithm 
A8 Ciphering key generating algorithm 
Kc Ciphering session key 

RAND Random Number 
SRES Signed Response 

2.2   GSM Architecture 

The GSM system has two major components: fixed installed infrastructure and the 
MS, which use the services of the network and communicate over the radio path. The 
fixed installed GSM network can again be subdivided into three subnetworks: the 
radio network, the network switching network and the public network. These subnet-
works are called subsystems in the GSM standard [10,15].  

In the GSM architecture, as shown in Fig. 1, the MS communicates through radio 
path with Base Station Subsystems (BSS) which are connected to MSC. The MSC 
performs all the switching functions of a fixed-network switching node, e.g. routing 
path search, signal routing, and service feature processing. The Authentication Center 
(AuC) stores subscribers’ secret keys and generates security parameters for the au-
thentication. AuC would normally be attached to a HLR but located in a secure envi-
ronment [1]. The HLR stores all permanent subscriber data and the relevant tempo-
rary data of all subscribers. Besides the fixed entries like service subscriptions, 
permissions and the stored data also contain a path to the current location of the mo-
bile station. The HLR is needed as the central register for routing to the subscribers, 
for which it has administrative responsibility. An HLR record consists of three types 
of information: (a) mobile station information such as IMSI and the mobile station 
ISDN number (MSISDN), (b) location information such as the ISDN number (ad-
dress) of a VLR, and (c) service information such as service subscription, service 
restriction, and supplementary services. 

The VLR stores the data of all mobile stations which are currently staying in the 
administrative area of the associated MSC. A VLR can be responsible for the areas of 
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one or more MSCs. Mobile stations roam freely. Therefore, depending on their cur-
rent location, they are registered in one of the VLRs of their home network or in a 
VLR of a foreign network. For this purpose, a mobile station has to start a registration 
procedure when it enters a Location Area (LA). The responsible MSC passes the 
identity of the MS and its current LAI to the VLR, which includes these values into its 
database and registers the MS. If the MS has not been registered with this VLR, the 
HLR is informed about the current location of the MS. The VLR information consists 
of three parts: (a) mobile station information, (b) location information, and (c) service 
information. 

The Equipment Identity Register (EIR) is used to prevent the use of stolen or 
fraudulent MS equipments. 

The MS is a piece of equipment which is used by mobile service subscriber for ac-
cess to services. It consists of two major components: ME and SIM. Only the SIM of 
a subscriber turns a piece of mobile equipment into a complete mobile station with 
network usage privileges, which can be used to make calls or receive calls. In addition 
to the IMEI, the mobile station has subscriber identification and call number such as 
IMSI and Mobile Station ISDN number (MSISDN) as subscriber-dependent data. 
Thus, GSM mobile stations are personalized with the SIM card. All the cryptographic 
algorithms to be kept confidential are realized on the SIM, which implements impor-
tant functions for the authentication and user data encryption based on the subscriber 
identity IMSI and secret key Ki [10]. 

3   GSM Authentication Protocol 

3.1   Verification of Subscriber Identity 

When a subscriber is added to a home network for the first time, a secret key (Ki) is 
assigned in addition to the IMSI to enable the verification of the subscriber identity. 
All security functions are based on the secrecy of this key. At the network side, the 
key Ki is stored in the AuC of the HLR. At the subscriber side, it is stored on the SIM 
card of the subscriber. 

The process of authenticating a subscriber (Fig.2.) is essentially based on the A3 
algorithm, which is performed at the network side as well as at the subscriber side. 
Network sends RAND to the MS. The MS calculates a SRES through A3 with Ki and 
RAND as inputs and transmits its SRES value to the network which compares it with 

 

Fig. 1. The GSM architecture[1,15] 



18      Young Jae Choi and Soon Ja Kim 

its calculated value. If both values agree, the authentication is successful. Each execu-
tion of the algorithm A3 is performed with a new value of the random number RAND 
which cannot be predetermined; in this way recording the channel transmission and 
playing it back cannot be used to fake an identity [10]. 

 

Fig. 2. Principle of subscriber authentication[10] 

3.2   Generating Security Data 

The security data of the current GSM authentication are described in the Fig. 3. At the 
network side, the 3-tuple (Kc, RAND, SRES) does not need to be calculated each 
time when authentication has to be done. Rather the AuC can calculate a set of (Kc, 
RAND, SRES) 3-tuples in advance, store them in the HLR, and send them on demand 
to the requesting VLR. The VLR stores these sets (Kc[n], RAND[n], SRES[n]) and 
uses a new 3-tuple from them for each authentication procedure. Each 3-tuple is used 
only once. When VLR consumes all sets of parameters, it requires HLR to send other 
sets of parameters. 

 
SRES = A3(Ki, RAND)   Kc = A8 (Ki, RAND) 

Fig. 3. The authentication parameters 

The random number RAND is generated and the pertinent signature SRES is calcu-
lated with the A3 algorithm, whereas the A8 algorithm generates the encryption ses-
sion key Kc. 

The set of security data, a 3-tuple consisting of Kc, RAND, and SRES, is sent to 
the HLR and stored there. In most cases, the HLR keeps a supply of security data, 
which can be transmitted to the local VLR, so that one does not have to wait for the 
AuC to generate and transmit a new key. When there is a change of LA into one be-
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longing to a new VLR, the sets of security data can be passed on to the new VLR 
[9,10].  

3.3   Encryption of Signaling and Payload Data 

The encryption of GSM provides data confidentiality in wireless path. The encryption 
of data is performed at the transmitting side. On the receiving side, the decryption 
directly follows the demodulation of the data stream. 

The encryption of signaling and user data is performed at the mobile station as well 
as at the base station. This is a case of symmetric encryption, e.g. ciphering and deci-
phering are performed with the same key Kc and the A5 algorithm. (Fig. 4.) 

Based on the secret key Ki stored in the network, the session key Kc for a connec-
tion or signaling transaction can be generated at both sides, and the Base Transceiver 
Station (BTS) and the MS can decipher each other’s data.  

The authentication and data confidentiality of GSM are described in the Fig. 4. 
There are a few existing drawbacks of the current system [1,2]. First, the space over-
head can occur when the VLR stores a set of authentication parameters. Secondly, the 
VLR needs the assistance of HLR when it identifies the MS. If VLR consumes all sets 
of authentication parameters of MS, it requests additional parameters to the HLR. 
Thirdly, there is bandwidth consumption between the VLR and the HLR, when the 
VLR needs other sets of authentication parameters. Fourthly, the authentication of 
VLR/HLR is not instituted in the GSM protocol. In fact, a fake VLR/HLR can give 
incorrect information to the user and cause a leak of confidential data in the MS. Once 
the sensitive information stored in the VLR is intercepted by an unauthorized user, the 
communication can be eavesdropped [1].  

 
Ciphertext = A5(Kc, Message), Message  = A5(Kc, Ciphertext) 

Fig. 4. Subscriber identity authentication and user data confidentiality in GSM [1] 

4   Enhanced Authentication Protocol 

4.1   The Design Goals of Authentication Protocol 

We have examined the drawbacks of GSM protocol in previous sections. In order to 
improve these drawbacks, we choose design goals of authentication protocol as fol-
lows:  
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(1) To achieve mutual authentication between an MS and the VLR 
(2) To improve the location privacy 
(3) To reduce the authentication flows 
(4) To reduce the stored space in VLR 
(5) To reduce bandwidth consumption between VLR and HLR 
(6) Authentication of mobile users is to be done by the VLR instead of the HLR, 

even if the VLR does not know the subscriber’s secret key Ki and A3 algorithm. 

Our general assumption is that the HLR and the VLR shares a symmetric key. The 
key can be shared by several key-exchange algorithms [14]. 

4.2   Proposed Authentication Protocol 

The improved protocol is depicted in the Fig. 5 and described in detail as follows:  
(1) The MS chooses a RAND and calculates the SRES1 by using A8 algorithm, 

shared secret key Ki and RAND. In order to use A5 as the encryption algorithm and 
to hide the secret key Ki, the MS computes another cipher key Ku with its IMSI, 
HLR_ID and Ki. The Ku is 64 bit-length, and is computed through a one-way hash 
function. The MS encrypts RAND with Ku through algorithm A5 and sends it with 
other parameters: TMSI, LAI, SRES1. The VLR stores SRES1 to authenticate the MS 
for a while. The VLR checks LAI to find the VLRo and requests the MS’s real iden-
tity IMSI by sending TMSI to the VLRo. When the VLRo sends IMSI to the  VLRn, 
it encrypts subscriber information with the secret key shared with the VLRn. By using 
encryption scheme and a shared secret key, we can provide the protection method for 
location privacy in wired path. 

 

Fig. 5. Proposed authentication protocol 

(2) In the similar way as in the existing authentication process for GSM, the VLR 
obtains the IMSI of the MS from the VLRo. Before sending IMSI to the HLR, the   
VLRn encrypts IMSI with the secret key KVH shared with the HLR of the MS. Then it 
sends the IMSI along with its identification VLR_ID and the RAND encrypted by the 
MS. The VLR cannot know MS’s RAND because the VLR does not have the secret 
key Ki.  

(3) Once the HLR receives these messages, it checks the identity VLR_ID of the 
visiting VLR in the database. If the HLR finds the VLR_ID in its database, it gets the 
shared secret key KVH. Then it decrypts the encrypted parameter by KVH and finds the 
IMSI of the MS. 
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In the same way as in the existing authentication process, the HLR verifies the 
IMSI, and finds the assigned secret key Ki stored in the AuC. Then, the HLR decrypts 
the MS’s parameter with the key Ki and obtains the RAND. Once the HLR obtains the 
RAND, it computes the Temporary Secret Key (Tki) through A8 algorithm and by 
using RAND and Ki as inputs. Finally, SRES2 is calculated through A3 algorithm and 
the two important factors: RAND, Ki.  

Over the wired path, the HLR sends SRES2, HLR_ID and parameters (Tki and 
RAND) encrypted with the shared key KVH to the visiting VLR of the MS. 

(4) When the VLR receives these authentication messages, it checks the identity 
HLR_ID of the HLR in its database and finds the shared key. The VLR decrypts Tki 
and RAND with the key KVH. Then, it compares SRES1 with SRES2. If these values 
agree, the identity of MS is authenticated. Now, Tki is used to compute the session 
key. The VLR creates the new TMSI of the visiting MS and encrypts it with the Tki 
through the A5 algorithm. Subsequently, it sends RAND and encrypted TMSI to the 
MS. 

(5) The MS compares the RAND with its own RAND. If they are the same ones, 
the MS can know that the VLR is the valid one. If the VLR is not authenticated by the 
HLR, it cannot decrypt RAND. So, the authentication between the MS and the VLR is 
completed. The MS computes the Tki through the algorithm A8, RAND and secret 
key Ki. In fact, the MS can compute the Tki in advance, because MS chooses the 
RAND and has the key Ki. This procedure can save computation time. Then the MS 
decrypts the new TMSI and acquires it. 

The security of the new authentication protocol for GSM is based on algorithm A3, 
A5, A8.   

5   GSM Location Privacy Protocol 

The MS roams from one place to another and has access to the network in any place 
at any time. The location of particular mobile user is the valuable information which 
needs protection [1,3]. The intent of location privacy function is to prevent disclosing 
which subscriber is using which resources in the network, by listening to the signaling 
traffic on the radio path. On one hand this should ensure the confidentiality of user 
data and signaling traffic, on the other hand it should also prevent localizing and 
tracking of a mobile station. This means that the IMSI should not be transmitted as 
plaintext. Instead of the IMSI, one uses a TMSI on the radio path for identification of 
subscribers. The TMSI is temporary and has only local validity, which means that a 
subscriber can only be uniquely identified by TMSI and the LAI. The association 
between IMSI and TMSI is stored in the VLR. The TMSI is issued by the VLR, at the 
latest, when the MS changes its location from one LA into another (location updat-
ing). When a new location area is entered, this is noticed by the mobile station which 
reports to the VLRn with the old LAI and TMSI (LAIold and TMSIold, Fig. 6.). The 
VLRn inquires the VLRo about MS’s IMSI and all pertinent security information by 
passing the TMSIo to the VLRo.  

The VLR issues a new TMSI for the MS. This TMSI is transmitted in encryption 
form. Then, the VLRn reports the IMSI of the MS to the corresponding HLR. The 
HLR stores the current location information of this MS in its database. Finally, the 
HLR clears all information relevant to the MS in the VLRo [10]. 
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In the case of database failures, if the VLR database is partially lost or no correct 
subscriber data is available (loss of TMSI, TMSI unknown at VLR, etc), the GSM 
standard provides for a positive acknowledgement of the subscriber identity. 

For the subscriber identification, the IMSI must be transmitted as plaintext before 
encryption is turned on. There is a possible attack on location privacy because of this 
procedure. 

The design of the location privacy protocol in GSM relies upon the security of the 
wired connection that is traversed by VLR and HLR communication. The original 
GSM protocol has two problems [1]. First, when the VLR updates the location of an 
MS, IMSI is exposed and delivered throughout the network without any protection. 
Secondly, when a user roams to another VLR, the location is updated by sending 
IMSI to the VLRn while the VLRo is not accessible and no correct subscriber data is 
available. It is possible that an unauthenticated third party may eavesdrop on the IMSI 
and identify this mobile user. 

 

Fig. 6. Location update using TMSI [9,10] 

 

Fig. 7. Authentication at location updating in a new VLR, abnormal cases [9] 

6   Location Privacy Protocol 

6.1   Location Privacy Problems in the Authentication at Location Updating 

When the MS updates its location, it sends TMSIo and LAI to the VLRn. In proce-
dure, there are two abnormal cases(Fig.7). One is that the VLRo cannot verify the 
MS’s IMSI. When the new VLR sends TMSIo to the VLRo, data loss occurs in the  
VLRo. If the VLRo cannot find the IMSI in its database, it sends the ’unknown’ mes-
sage to the VLRn. Then the VLRn sends ’Identity Request’ message to the MS and the 
MS sends IMSI to the VLRn without any protection.  

The other is that the VLRn cannot reach the VLRo. This process is similar to the 
above process. When the VLRn receives LAI and TMSI, it cannot reach the VLRo. In 
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this case, the VLRn sends ‘identity Request’ message to the MS and the MS sends its 
IMSI without any protection.  

In these cases, there are location privacy problems in the authentication at location 
updating. If a malicious attacker tries to obtain the MS's IMSI, it can do it by the pro-
cedure of the Fig. 8. When the MS sends LAI and TMSI to the VLR, an attacker pre-
tends a VLR and sends ‘VLR not reachable’ message or ‘TMSI unknown’ message to 
the MS. Then the MS sends its IMSI to the attacker, and the attacker obtains the MS's 
IMSI. It is a possible location privacy attack, because there is no way to authenticate 
the VLR at the MS side. 

 

Fig. 8. Location privacy attack 

6.2   Proposed Location Privacy Protocol 

In order to prevent this location privacy attack, we propose a location privacy proto-
col. The protocol is depicted in the Fig. 9. This protocol is based on the Alias (AL). 
The alias is a unique identity of MS for traveling and assigned to the MS's IMSI one-
by-one. The alias is similar with the structure of IMSI and has 15 bit-length. It is as-
signed to a user by the HLR. The assignment between aliases and real user identities 
should be kept secret by the HLR.  

 

Fig. 9. Proposed location privacy protocol 

When the VLR sends 'Identity request' message to the MS, the MS sends the AL 
and HLR_ID to the VLR. Then, the VLR encrypts the AL with the shared key and 
sends it to the HLR. The HLR decrypts the AL, and checks it in its database. If the 
HLR finds the IMSI which is assigned to the AL, it computes the Ku with the MS's 
information and decrypts the RAND. Then, the HLR sends encrypted the IMSI to the 
VLR with other security parameters. Finally, the VLR obtains the IMSI. In this way, 
this protocol can prevent attack mentioned above. 
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7   Cryptanalysis 

Our authentication architecture is based on algorithms A3, A5, and A8 in order to 
apply for the existing Authentication protocol for GSM. In addition, we use another 
symmetric key: Ku. In original algorithm, the Ki is a 128 bit-length key, and the en-
cryption Kc is a 64 bit-length. We use 64 bit-length key Ku to encrypt the MS’s im-
portant authentication parameter RAND and to protect the Ki from guessing attacks.  

Our protocol assumes symmetric keys to authenticate the old VLR, the new VLR 
and the HLR. These keys are the basis of location privacy and the mutual authentica-
tion between the MS and the VLR. When the old VLR sends the IMSI to the new 
VLR, it encrypts the IMSI with the shared symmetric key to protect against any at-
tacks e.g. eavesdropping. The new VLR also sends the IMSI to the HLR with the 
same procedure. These procedures provide the location privacy in the wired transmis-
sion.  

We use RAND as a important parameter. The MS generates the 128 bit-length 
RAND. During the authentication, nobody can know the RAND except the HLR 
because the secret key Ki is only known to the MS and the HLR. When the HLR 
decrypts the RAND and sends it to the VLR, the VLR can know the RAND. Then, the 
VLR sends it to the MS and the MS compares it with its own RAND. If these values 
agree, the MS can know that the VLR is valid because the only valid VLR has the 
shared key and decrypt RAND. The parameter RAND provides the mutual authenti-
cation between the MS and the VLR.  

As the above, without the knowledge of Ki, no one can compute Ku, RAND, SRES 
and Tki. Therefore, the security of the proposed protocol is based on Ki.  

8   Discussions 

In the previous sections, we have reviewed the existing authentication protocols for 
GSM and shown their drawbacks. We have also described an improvement in the 
authentication protocol and location privacy for GSM. In the following, we shall 
demonstrate that our proposed protocol can achieve our requirements. 
− Mutual authentication: It is assumed that the symmetric keys are set up before 

mobile communication and each VLR and HLR knows the shared key. If the VLR 
is a fake, it can neither obtain the IMSI from the old VLR nor encrypt the IMSI. 
By these symmetric keys, this protocol can achieve the mutual authentication be-
tween the HLR and the VLR. In addition, it can also achieve the mutual authenti-
cation between the MS and the VLR by comparing the RAND and SRES.  

− Improvement of the location privacy: In order to provide the location privacy in 
wired transmission, we assume the shared symmetric keys among the network sys-
tems. e.g. VLR, VLR/HLR. In the abnormal case of transmission, we use Alias to 
protect the IMSI in wired transmission. It works in wireless transmission, too. 

− Reduction in authentication procedures: The original GSM and Lee et al’s pro-
tocol [1,2] are needed 5 data flows to finish the authentication procedure. In our 
protocol, the VLR authenticates the MS just in 3 data flows and the MS authenti-
cates the VLR in 4 data flows. The fourth flow includes the new TMSI of MS. 
Therefore, it reduces the procedure of sending new TMSI. 
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− Reduction in the storage of the VLR database: In the proposed protocol, it has  
shown that the VLR stores only one copy of authentication parameter (Tki) in-
stead of n copies (RAND[n], SRES[n], Kc[n]) in original protocol and (RAND, 
Tki) in Lee et al’s protocol. Therefore, the proposed protocol can save the VLR 
database space. 

− Reduction of bandwidth consumption: In the proposed protocol, the HLR gives 
the VLR Tki to authenticate the MS. As long as the MS stays in the coverage area 
of the visiting VLR, the VLR can use the Tki to authenticate the MS for each call. 
Though the visiting VLR consumes all sets of authentication parameters, it does 
not need to request the HLR to send other sets of parameters. Therefore, the sig-
naling load is reduced between the VLR and the HLR and the bandwidth con-
sumption is reduced too. 

− In the existing authentication protocol for GSM, the VLR authenticates the MS 
with the assistance of the HLR when it used up all of the authentication parame-
ters. In the proposed protocol, the VLR authenticates the MS with Tki assigned by 
the HLR. Once the VLR has the Tki, it can authenticate MS without assistance of 
the HLR.  

− The security of the new protocol is based on algorithm A3, A5 and A8 of the 
original GSM. 

We have mentioned about the original GSM architecture, its authentication 
scheme, drawbacks and the goals of secure authentication in detail. Many authentica-
tion protocols [1]-[6] cannot achieve our goals as shown in Table2. Our protocol 
meets the requirements without changing the architecture of the GSM system. Lee et 
al proposed protocols that did not change the original architecture [1,2]. But it cannot 
provide the location privacy in wired path. 

Next, we have depicted our authentication protocol. The original GSM protocol 
and the Lee et al’s protocol[1] do not support mutual authentication between the MS 
and the VLR. In our protocol, the MS authenticates the VLR with RAND generated 
by the MS. In fact, it can be a burden for the MS to generate RAND because of its 
weak computation power and small battery. But the MS does not need to generate 
RAND for every location update. Only when the MS moves to a new VLR, it gener-

Table 2. Comparison among the GSM authentication protocols 

 GSM Ours [1] [2] [3] [4] [5] [6] 

Mutual Authentication between MS and VLR N Y N Y Y Y N N 
Mutual Authentication between VLR and 

VLR/HLR 
N Y Y N Y Y N Y 

Reduction of Bandwidth Consumption N Y Y Y N N N N 
Reduction of the Storage of VLR database N Y Y Y N N N N 

Authentication of MS by VLR instead of HLR N Y Y Y N N N Y 
The Security Basis is same as the original 

architecture 
- Y Y Y N N Y N 

The number of Data Flows to authenticate MS 5 3 5 5 3 3 5 6 
The number of Data Flows in protocol 5 4 5 5 4 4 5 8 
Identity Confidentiality in wired path N Y N N Y N N Y 

[·]: Reference No. 



26      Young Jae Choi and Soon Ja Kim 

ates RAND. In addition, the MS chooses RAND and generates SRES and Tki in ad-
vance. These procedures save the setup time. Since the VLR does not ask the HLR for 
another sets of authentication parameters in Lee et al’s protocols [1,2] and our proto-
col, the bandwidth consumption is less than that of the original GSM protocol. In 
addition, In the Lee et al’s protocols, a 2-tuple (RAND, Tki) stores in VLR for inde-
pendent authentication of MS but our protocol is needed to stored only one parameter 
Tki. Therefore our protocol is needed less storage in VLR. 

We have shown a possible attack in location privacy in wired transmission and 
proposed a new location privacy protocol that is secure in wireless and wired path. 
The alias assigned by the HLR can prevent the possible attack. 

9   Conclusion 

In this paper, we have examined some drawbacks of the existing authentication proto-
col and a possible attack on location privacy. In order to overcome these disadvan-
tages, we propose an improvement on authentication and location privacy protocol. 
The proposed authentication protocol provides mutual authentication between VLR 
and MS, reduction of authentication data flow and storage space in VLR. The new 
location protocol can prevent a location privacy attack with the Alias which we pro-
posed. 
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Abstract. The most common way to implement full-disk encryption (as opposed
to encrypted file systems) in the GNU/Linux operating system is using the en-
crypted loop device, known as CryptoLoop. We demonstrate clear weaknesses
in the current CBC-based implementation of CryptoLoop, perhaps the most sur-
prising being a very simple attack which allows specially watermarked files to be
identified on an encrypted hard disk without knowledge of the secret encryption
key.
We take a look into the practical problems of securely booting, authenticating,
and keying full-disk encryption. We propose simple improvements to the current
CryptoLoop implementation based on the notions of tweakable encryption algo-
rithms and enciphering modes. We also discuss sector-level authentication codes.
The new methods have been implemented as a set of patches to the Linux Kernel
series 2.6 and the relevant system tools.

1 Introduction

Perhaps the most typical approach for protecting the confidentiality and authenticity of
files is to use PGP or other similar encryption tools which allow users to encrypt files for
transmission and storage. Explicit decryption is required before a file can be modified.
After plaintext file is no longer needed, it must be re-encrypted and securely deleted
(wiped). This can be cumbersome, so more transparent methods have been devised.
These can be categorized into encrypting file systems and sector-level encryption.

Encrypting File Systems. These generally allow flexible control over which directories
are encrypted and which are not. The main problem with encrypting file systems is that
temporary files containing sensitive information are often stored on unencrypted por-
tions of the disk, such as swap devices / page files, various caches, or “temp” directories.
Examples of encrypting file systems are CFS [5] and TCFS [7] in the UNIX world, and
Microsoft’s EFS.

Sector-Level Encryption. These systems implement encryption below the file system
level, and allow entire hard disks to be encrypted. Sector-level encryption systems do
not usually allow fine-grained access control for files. The whole volume is protected
with a single master key (many options for managing and storing this key exist). File
system (“upper layer” from our viewpoint) accesses data as sectors. In our terminology

C.H. Lim and M. Yung (Eds.): WISA 2004, LNCS 3325, pp. 27–38, 2004.
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a sector is a logical unit consisting of 512 bytes (4096 bits); larger physical sectors must
be split into 512-byte pieces. We use this convention regardless of the actual sector size
used by the file system (typically 1024, 2048 or 4096 bytes in the case of EXT2 [6]).

Since the file system must be able to perform quick single sector random access
reads and writes on the disk, each sector must be “independent” of others; no other data
is needed for encryption and decryption than the sector itself, sector identifier, and the
secret key.

Sector-level encryption is often the preferred choice in cases where the hard disk has
little physical protection (e.g. with personal portable computers). The Linux Crypto-
Loop implements sector-level encryption, as does SFS [12] and many commercial sys-
tems for the Microsoft OS platforms.

Linux CryptoLoop. CryptoLoop is a facility provided by the Linux Kernel to easily
integrate encryption below the file system level. It works regardless of the file system
used. With CryptoLoop, a physical disk drive, a disk drive partition, or a container file is
“looped” as a loop device (/dev/loop0, /dev/loop1, ...). After a key is provided
to the Kernel using the losetup utility, the loop device driver transparently takes care
of encryption and decryption whenever the loop device is accessed. The loop device
can then be initialized and mounted using any file system. Figure 1 illustrates the call
dependencies of CryptoLoop.

Since encryption and decryption is always done on independent 512-byte sectors,
we call such a transformation Sector Enciphering Operation (SEO). SEO and its inverse
can be characterized as follows:

C = SEO(P, K, T )
P = SEO−1(C, K, T )

User Processes

Virtual File System (VFS)

EXT2 File System Virtual Memory
Manager

CryptoAPILoop Device

Disk Device Driver

Disk Drive

Kernel

Fig. 1. CryptoLoop call structure.
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Here P is the plaintext sector of 512 bytes (4096 bits), K is the secret key, T is the
tweak (sector number), and C is the corresponding ciphertext sector.

Efficiency considerations usually dictate that SEO is length-preserving. Inform-
ation-theoretic arguments can be used to show the impossibility of proper message
authentication in such a case. We will return to these issues in section 5.

Structure of This Paper. In section 2 we illustrate some attacks against the present Linux
implementation of CryptoLoop. We believe the “watermarking” technique in section
3 to be novel. In section 4 we introduce a practical security model for sector level-
encryption (this is fundamentally the same as that proposed by Halevi and Rogaway in
[14, 13] and implicitly by others before them [8]), and discuss various ways to achieve
the goal set by the model. Section 5 discusses sector-level message authentication and
makes an argument for not having sector-level authentication but rather authenticating
at file system level. Section 6 contains some of our experiences and practical thoughts
about implementation of sector-level encryption. Section 7 contains performance anal-
ysis of the implementation, and is followed by concluding remarks in section 8.

2 Attacks

Currently the Linux 2.6 series offers a selection of SEOs constructed from various well-
known block cipher algorithms. Mode of operation can be chosen to be either ECB or
CBC. We ignore the obviously weak ECB mode and concentrate on CBC, which is
absolutely the most commonly used choice.

CBC is currently initialized for each sector by using the sector number directly as
the initialization vector. This convention is also used at least by 2.2, 2.4 series of Linux
kernels, and by versions of Jari Ruusu’s loop-AES package that were published prior to
December 2003 [23].

The 512-byte plaintext sector P is split into blocks P = p1 | p2 | p3 · · · . The
corresponding ciphertext is C = c1 | c2 | c3 · · · . Encryption of plaintext block x with a
secret key K is denoted by Ek(x). Hence the SEO becomes:

c1 = Ek(p1 ⊕ T )
c2 = Ek(p2 ⊕ c1)
c3 = Ek(p3 ⊕ c2)

· · ·
c32 = Ek(p32 ⊕ c31)

Here we assume that a 128-bit block cipher is used. In the case of 64-bit block
ciphers, the last plaintext and ciphertext blocks would naturally be p64 and c64, corre-
spondingly. Here T is the Tweak and is equal to the logical sector number.

Standard Attacks. In some conditions it is conceivable that an encrypted disk will be
subject to repeated scans and even active manipulation based on such scans (typical
scenario for such scans is during international travel – customs and baggage checks).
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Replay attacks on CBC mode in CryptoLoop have been known for years (many
were explicitly pointed out by J. Etienne [10]), yet it has persisted as the dominant
disk-encryption system for Linux. We give some well-known examples:

1. Corrupt. Corruption of chosen data blocks is difficult to detect. As CBC decryp-
tion has little error propagation, modifying a ciphertext block within sector will
only corrupt the corresponding plaintext block (8 or 16 bytes) and cause chosen bit
changes the one block immediately following it.

2. Move. It is easy to shift multiple ciphertext blocks anywhere within the hard disk.
Only the first plaintext block will be corrupted. This opens a big toolbox of “cut &
paste” attacks.

3. Revert. It is possible to revert chosen sectors to their previous values without de-
tection. An attacker can from two ciphertext images detect where the changes lie
and choose the sectors to be reverted accordingly.

Together these options (possibly with the aid of watermarkings – see next section –
to provide “location data”) allow subtle and powerful manipulation of the hard disk on
ciphertext level.

3 Encrypted Watermarks

We introduce the concept of encrypted watermarks, which are subtle markings on ar-
bitrary plaintext files. The existence of these markings (and hence the existence of files
that contain them) can be proven on the corresponding ciphertext without knowledge of
the secret key1. Encrypted watermarks provide a powerful investigative technique for a
forensic analyst who wishes to identify files such as restricted documents, pornography
or “warez” on encrypted hard drives.

We recall a couple of basic facts that apply to most UNIX disk file systems, includ-
ing EXT2, EXT3, ReiserFS, UFS, XFS, etc.

a) File data is mostly (P > 0.99) stored on consecutive sectors on the disk2.
b) File data starts at an even multiple of the sector length.

Simple Watermarks. In CBC Linux CryptoLoop, we may create simplest kinds of wa-
termarks in files by making the first block of two consecutive sectors differ only in the
least significant bit. There is a significant probability that the corresponding ciphertext
blocks will be equal, and hence can be identified with high certainty from the ciphertext
alone (without knowledge of the secret key).

Advanced Watermarks. This idea can be extended in many ways, as long as the XOR-
difference between the plaintext sectors’ first plaintext blocks can be matched with
the XOR-difference of their sector numbers. The probability is affected by the actual

1 The concept of encrypted watermark is an extension of watermarking as understood in the
context of Digital Rights Management.

2 This is not necessarily true for FAT file systems, which are much more prone to fragmentation.
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sector size and fragmentation properties of the file system above the loop device, but
experiments have shown the probability to be very high with typical EXT2-based setup.

It is possible to devise more reliable and elaborate watermarking schemes by basing
the markings on particular patterns of first-block collisions within a file. A file can
contain multiple complementary watermarks. Such a marking (and file) can be located
on an encrypted device with high certainty. Since the majority of the file is unchanged,
such markings are stealthy and easy to insert into jpeg pictures, mp3 music files, ps/pdf
files, program binaries etc.

Example (with a 64-bit block cipher):

0x00000 Any data ..
0x13000 Eight bytes 0000000000000000
0x13008 Any data ..
0x13200 Eight bytes 0000000000000001
0x13208 Any data ..
0x13400 Eight bytes 0000000000000000
0x13408 Any data ..

This file contains a watermark that will be visible in the encrypted device, as long as
data at positions 0x13000 .. 0x135ff are contained in three consecutive sectors on the
physical disk.

Proof. Let n, n + 1, and n + 2 be the sectors containing this section of the file. We
note that for any n either n ⊕ (n + 1) = 1 or (n + 1) ⊕ (n + 2) = 1. Hence either
EK(0⊕n) = EK(1⊕(n+1)) or EK(1⊕(n+1)) = EK(0⊕(n+2)). The watermark
can thus be detected as the same ciphertext block can be found at the beginning of two
consecutive ciphertext sectors (regardless of location).

4 A Security Model

Following the language of [13, 14, 18, 19], we want SEO to be a strong, tweakable,
pseudorandom permutation (PRP); for a random key we wish SEO (and its inverse) to
be indistinguishable from a random permutation.

Furthermore, we wish SEO to be resistant to various attacks based on key schedul-
ing and tweaks. Equivalent keys, related keys, and other “weak key” classes (if they
exist) should be computationally difficult to find. There should be no shortcut attacks
based on chosen, weak, or related tweaks.

In short, there should be no analytic attack which is computationally cheaper than
exhaustive search through the keyspace, regardless of the amount of chosen plaintext
and/or ciphertext (with associated tweak values) available. If these conditions are vio-
lated by an attack, SEO can be considered broken.

Encryption Modes. We have found certain commercial disk encryption systems to uti-
lize CTR and even ECB modes for encryption, both of which offer clearly unsatisfactory
resistance to attacks. ECB for obvious reasons, and CTR in the case that multiple scans
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are made (all plaintext changes made between the scans will become visible when the
two ciphertext disk images are “xorred” together).

Recently Halevi and Rogaway proposed the CMC and EME modes for this purpose
[13, 14]. These remain unbroken. We observe that EME, CMC, and all other satisfactory
modes for sector-level encryption are in fact double-encryption modes, and hence offer
roughly half the speed of conventional modes such as CBC.

Special Tweakable Block Ciphers. As the use of provably secure sector encipherment
modes appears to result a significant performance penalty (due to beforementioned
double-encryption), crafting a custom 4096-bit block cipher seems justified.

This motivated us to design a prototype cipher named Herring [22]. Herring was
designed with the explicit purpose of satisfying all the security requirements outlined
above, while also maintaining encryption speed comparable to AES in “single - en-
cryption” mode. Herring accepts a 128-bit key and a 128-bit tweak. Conclusions about
the security of Herring can be drawn only after years of public analysis. We wish to
make Herring public soon, although the findings of this paper are valid for any 4096-bit
tweakable block cipher.

Some other 4096-bit block ciphers have been constructed explicitly for the purpose
of sector level encryption. One proposal was the Mercy block cipher [8], which was
broken by Fluhrer [11]. Another 4096-bit block cipher present in the literature is the
unnamed proposal of Kaliski and Robshaw [17], which was found to be weak by Saari-
nen [21].

Wide-block block ciphers have also been constructed from other primitives. An
interesting approach was taken by Anderson and Biham with the BEAR and LION
ciphers, which combine a hash function with a stream cipher to produce a block ci-
pher [2].

5 Why No Authentication at Sector Level?

Even if SEO satisfies the criteria given in the previous section, it is still prone to some
replay attacks (e.g. reverting and corruption of sectors). We have considered a num-
ber of approaches for the sector-level authentication problem but we have not found
satisfactory solutions. Different options include:

a) Check everything at mount time using a signature algorithm. This is clearly pre-
ventive, since it would involve both reading the entire hard disk during mount time
and correspondingly signing it when unmounting (assuming that it was mounted
read-write).

b) Incorporating MACs with the sectors. By including the sector number in the au-
thenticated data, this makes other modifications other than reversion attack (where
sector n is reverted to its previous contents) detectable.
If implemented on loop device level, this would make the boundaries between phys-
ical sectors and logical sectors incompatible. A read operation on a single isolated
sector would always imply two physical sector reads. A write operation would im-
ply two sector reads and two sector writes. The performance drop would therefore
be significant.
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c) Maintain a table of MACs in memory, which is loaded during mount time and
stored (and signed) in a file when the disk is unmounted. This is a reasonably im-
plementable approach, especially if we use the actual file system sector size and
a truncated MAC. Using HMAC-SHA1-64 [4] with sector size 4096 bytes corre-
sponds to two megabytes of MACs for each gigabyte of disk (0.195%), which is
manageable.

d) Dynamically maintain a Hash Tree of the sectors of the disk. The memory require-
ments are similar to the previous option, but an advantage exists in that the hash of
the whole disk can be maintained at all times, thus perhaps allowing better recovery
from crashes. We do not see this as a very effective solution.

e) Dynamically maintain a “sum” of MACs of each sector:

S =
n⊕

i=1

MACK(i | Pi)

Here MACK is a keyed MAC with secret K and Pi is the sector with logical number
i. It is plain that a sector write becomes a sector read-write in this option, but that
performance penalty is acceptable. Even though read, write, mount, and unmount
operations are quick and memory usage is acceptable, the drawback is that in order
to detect changes (i.e. to find out that the sum doesn’t match), the whole disk needs
to be read and this doesn’t even tell us where the change occurred!

Of these approaches, maintaining a table of MACs in memory (option C) appears to
be the most feasible one, but it alone doesn’t really provide a satisfactory solution for
error recovery. It is nice to know that an error has occurred but what can you do with
this information? In cryptographic communication protocols the connection is typically
simply shut down if “MACs don’t match”, but making the whole disk unusable after a
single bit error or operating system crash is not acceptable.

Therefore perhaps the most important question is to decide on how to respond to an
anomalous situation, i.e. when the authentication code doesn’t match. Mechanisms do
not exist in the current Linux architecture for the loop device to communicate to a file
system layer that the error may be a security issue rather than a simple disk error (such
sectors will simply be marked “bad”). And how could such a determination be reached?

If an error is found (after a crash or unclean shutdown) and the encrypted disk is
fsck’ed, the recovered file system may be perfectly healthy and the ill effects can-
celled. Therefore it is reasonable to incorporate authentication at file system level.

Practical Approach. Since CryptoLoop cannot really protect against all attacks that
modify ciphertext in the disk, we recommend regular use (e.g. by a cron mechanism)
of systems such as Tripwire (see www.tripwire.org or www.tripwire.com),
which can detect malicious changes to files. It is noteworthy that these tools will not
only detect physical attacks when a computer is at unauthorized hands, but also many
network-based attack vectors (esp. “backdooring”) while the computer is being used by
its authorized user.
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6 Implementation

We can see three different methods of implementation for a SEO.

a) A software implementation as a part of the operating system kernel. This is the easi-
est option, but will cause a performance penalty in disk-intensive applications. Such
an implementation may also utilize cryptographic hardware speedups via DMA.

b) Hardware support in the disk controller or the hard drive itself. After keying the
disk controller or the drive itself will transparently encrypt and decrypt everything.
This would essentially make the encryption process independent of the operating
system itself.

c) Implementation as a “bump in the cable” on the (IDE/ATA or SCSI) cable. This
method of implementation would be easy to integrate into existing systems, but it
may end up being more costly than hardware support in the controller.

We have only experimented with the first option, but plans exist for a FPGA-based
hardware implementations as well.

Our Current Implementation. The required modifications to the present Linux 2.6 series
kernel source were minor. The patch contains about 3000 lines of code, majority of it
being the Herring cipher. The patch also adds support for a new mode of operation and
“tweak” keying required for sector-level encryption. The needed changes can therefore
be implemented in the framework of current Linux cryptographic support.

Perhaps surprisingly, no changes were required for losetup or other v.2.12 util-
ities that are used in setting up and keying the loop devices. A script was written
which requests a passphrase from the user, hashes it (with salting), and passes it on
to losetup. More elaborate key management and authentication methods would be
easy to add. We had also to create small statically linked versions of these utilities so
that they fit into the initial ram disk, discussed below.

Booting. One of the trickiest things about encrypted Linux laptops is to come up with
a reasonably secure boot procedure. Since we’re using standard hardware, it is almost
impossible to come up with a “bullet-proof” solution, as the hardware itself can be
modified to include key loggers or similar intercept devices. It is not within the scope
of this paper to discuss methods for preventing hardware modification in any detail,
but some level of inexpensive protection can be achieved by simple seals and manual
inspection of hardware after suspected modification.

As a rule of thumb, one would like to have as little as possible of the computer hard
disk to be in plaintext. Some practioners have decided to keep the “static” parts of the
hard disk unencrypted (e.g. /bin, /sbin, /usr, but not /etc, /var or /home). It
is relatively easy to backdoor such systems with standard rootkit tools.

Currently our best practice for booting is as follows:

1. Firmware setup. We are in practically forced to use standard BIOS firmware.
We enable the available security features (BIOS setup passwords etc.), and disable
booting from other devices than the main hard disk.
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2. Boot loader. The boot loader resides on the Master Boot Record on the hard disk.
We use the LILO boot loader in “simple mode”, so that it will directly load up the
compressed kernel image and initrd (initial ram disk) using BIOS routines.

3. Boot partition. Since we saw little purpose in incorporating encryption into the
LILO itself, we are forced to keep the kernel image and the initrd unencrypted in a
separate partition. These require a total of 2.5 MB of space.

4. Initrd. The initial ram disk contains a small file system that is first mounted as
root. A passphrase prompt becomes visible within 5 seconds after power-on. Other
authentication mechanisms can also be easily incorporated into the initrd environ-
ment (which roughly corresponds to single-user mode). A master key is derived
from the passphrase and used to set up the loop device. The encrypted loop device
is then mounted as the new root.
At this stage a “rescue system” can also be activated, which contains the following
items (all in ram disk):
a) Diskwipe. A program for quickly wiping the contents of entire hard disk.

The wipe procedure exceeds the requirements set in DoD 5220.22-M standard
(“sanitize” method D for non-removable rigid disks, p. 8-3-5 [9]).

b) Convert. A tool for re-encrypting the hard disk using an alternative master key
or cipher algorithm.

c) Busybox. A small shell-like environment for rescue purposes3.
There is no access control to reach the rescue system.

5. Boot verification. In the first stages of (encrypted) boot, digital signatures of the
kernel image and the initrd image are verified at the boot partition. The correspond-
ing signatures and public keys reside on the encrypted partition of the disk are thus
difficult to forge (in fact it would be sufficient to check their message digests against
known values).
Also an attempt is made to verify the integrity of firmware by comparing it to
known digest values with physical memory image accessible through /dev/ram.
However, not all of the firmware binary appears to be visible at this point.

We acknowledge that this boot procedure is not wholly secure against all software-
based attacks, although such attacks would seem to require non-trivial human effort.
One possible attack would involve crafting modifications to the kernel so that it is able
to maintain the appearance that everything is going smoothly (by returning false val-
ues to system calls) while also containing a trojan horse for capturing and transmitting
the master encryption key. A reasonable amount of obscurity and variation in the im-
plementation details guards against such attacks (obscurity is unfortunately the only
method available to resist against this class of attacks)4.

Alternative Boot and Keying Methods. We have also experimented with other boot
sequence options. Small, lightweight, and inexpensive USB solid state memory devices
have become available in recent years. Many BIOS Firmware vendors allow booting

3 Busybox was not developed as a part of this research effort. See www.busybox.net
4 Trusted Computing Group is an emerging industry standard that will provide mechanisms

to detect BIOS and MBR manipulation (among other things) and therefore to improve the
security of early steps of booting. See www.trustedcomputinggroup.org
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from these devices. It is relatively straight-forward to include the boot loader, kernel
image, and initial ram disk into such a device, and thus allow 100 % of the hard disk to
be encrypted, the unencrypted portion being part of one’s keychain! Similar approach
can be taken with CD-ROMs, albeit they are not as easily transportable. USB tokens
and various smartcard systems are easily incorporated into the initial ram disk phase of
booting. There is no need to store the key on the token itself, so even national ID cards
which support public key decryption may be used (e.g. FINEID in case of Finland). For
yet another approach see AEGIS [3] and its smartcard-based extension sAEGIS [15].

Encrypting Swap. Linux has full support for encrypted swap devices. Even easier so-
lution is to use a swap file which resides on the same encrypted partition with the main
file system5.

Other Implementations. To our knowledge, tweakable modes have not been previously
implemented in the Linux kernel.

The BestCrypt for Linux 1.5.1 [16] package from Jetico Inc. uses IV with CBC
mode in a similar (although not entirely compatible) fashion as current CryptoLoop,
and hence is vulnerable to the attacks described in this paper6.

TCFS [7] appears to either use ECB mode (before version 3) or CBC mode with
zero IV (after version 3), and is vulnerable to similar attacks.

Matt Blaze’s Cryptographic File System [5] utilizes a combination of OFB and
ECB modes, but is also vulnerable to attack. Peter Guttman’s Secure File System (SFS)
used MDC/SHS, a special construction which turns the SHA hash function into a block
cipher in CFB mode. This does not satisfy our security requirements either. The con-
struction based on MD5 (MDC/MD5) was shown to be weak by Saarinen [12, 21].

We have also evaluated several commercial disk encryption systems for which
source code or full specification is not publicly available. Generally speaking, most
commercial sector encryption products do not appear to offer effective protection
against watermarking / multiple scanning attacks7.

7 Performance

We measured the speed of read and write operations on a typical modern PC laptop,
Acer TravelMate 420, which has a 2 gHz Pentium 4 CPU and ATA disks.

The performance was measured with one gigabyte (230 bytes) continuous reads
and writes in single-user mode using dd (i.e. data transfers from the loop device to
/dev/null and from /dev/zero to the loop device). No special optimization was
used, and caches were disabled. The operating system was our custom modified Linux
2.6.1.

5 It appears that at the time of writing all mainline Linux versions may have deadlock problems
with encrypted swap. We hope that this will be fixed soon.

6 Since the Linux version is compatible with the Windows versions of BestCrypt from the same
vendor, we believe these to be also vulnerable.

7 Since some of our security analysis methods may be interpreted as reverse engineering or dis-
closure of trade secrets and thus violation of certain local laws, we are restricted in discussing
these results.



Encrypted Watermarks and Linux Laptop Security 37

The following table summarizes our measurements.

Encryption algorithm Read MB/s Write MB /s
None 14.8 14.7
AES-128 CBC 13.0 14.6
Herring 11.0 10.2
AES-128 EME 7.3 9.7

Implementation of AES and CBC were the the standard ones in Linux 2.6 kernel.
The AES implementation is based on the work by Brian Gladman and is reasonably op-
timized. The implementation of EME mode [14] was by the author, with sector size 512
bytes (hence 65 AES block operations per sector, compared to 32 required by CBC).
The implementation of the preliminary version of Herring was also by the author. All
the implementations are in portable C language without assembly optimizations. There
is room for performance improvement.

It should also be noted that laptop hard drives are somewhat slower than those drives
now common on desktop machines. However, we feel confident in concluding that full
sector-level encryption does not present a significant performance bottleneck for day-
to-day computer use.

8 Concluding Remarks

Most government agencies and many large corporations have security policies in place
which make encryption of hard disks mandatory for laptops. Easiest and most trans-
parent method of achieving such protection is by using sector-level encryption, which
leaves as little as possible of the disk unencrypted.

Disk encryption is not a performance bottleneck nor does it significantly decrease
the usability of the system. Therefore there are few excuses for not deploying it where
ever possible.

Careful analysis has shown that many products and techniques widely used for
sector-level encryption are vulnerable to active manipulation and even watermarking;
the presence of (planted) restricted data can be detected without breaking the encryption
key.

However, good solutions can be reached with limited resources and open software.
Sector-level encryption also offers a good motivation for research into very wide-block
tweakable block cipher designs and tweakable enciphering modes.
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Abstract. In distributed component environment, a Role-Based Access Control 
(RBAC) server manages all authorization policies of components in the same 
domains whereas the components are distributed to an application server on a 
network with their authorization policies. It is necessary to detect inconsistency 
between the authorization policies of the RBAC server and the distributed com-
ponents to guarantee the authorization policy integrity while system configura-
tion and policies are changing. In this paper, an inconsistency detection method 
between the two authorization policies is proposed. Conditions of guaranteeing 
consistency are investigated to detect the inconsistencies and validated in a case 
study. 

1   Introduction 

In distributed component environment, a component is published through its remote-
call interfaces to outside, and a client application can access the methods of the com-
ponent through the published interfaces [8, 11]. However, it is highly vulnerable to 
enable the component to be accessible from anyone including other untrusted parts. It 
is needed to provide proper permission for access control to the component to avoid 
undesirable access control problems such as information leaking due to improper 
handling of the component and misuse of the service provided by the component [5]. 
The authentication and authorization are proposed to prevent the improper user access 
to the component. The authorization is directly related to the component access con-
trol than the authentication, since the authentication verifies a clamed identity who 
can access the component whereas the authorization decides the access authority of 
the authenticated users who access the component.  

The Discretionary Access Control (DAC) and Mandatory Access Control (MAC) 
are emerged for military systems but not sufficient for commercial systems [3, 7]. 
The researchers have studied access control models for commercial systems to sup-
port trusted transactions, subject-based security policy, conflict-of-interest and least 
privilege. Role-Base Access Control (RBAC) was proposed by Ferraiolo and Kuhn. 
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Fig. 1. RBAC model 

For most of component platforms, the RBAC model can be applied for component 
access control [2, 5].  

In distributed component environment, the RBAC server generally manages all au-
thorization policies of components in the same domains whereas the components are 
distributed to an application server on a network with their authorization policies. 
Therefore the RBAC server maintains authorization policy integrity of an entire com-
ponent-based system using constraints [1, 4, 9]. Since the authorization policies are 
embedded into the components, it is possible that the authorization policy integrity of 
the whole system is not guaranteed if the embedded authorization policies of the 
components are not properly updated with ones of the RBAC server. Especially, a 
distributed component environment has many changes such as addition, deletion, and 
modification of the components in order to effectively adapt to the changes in a busi-
ness process. Because of these changes, it is necessary to change authorization re-
quirements, and then addition, deletion, and modification of the roles. The permis-
sions should be issued in the RBAC server. Therefore, in order to guarantee the 
integrity of component authorization policies accommodating such these changes, it 
is indispensable to guarantee the consistency of two authorization policies. In this 
case, it is a challenging task that proper access permissions should be managed in a 
fast-changing business environment [3].  

This paper proposes an inconsistency detection method of the authorization poli-
cies between the RBAC server and the distributed components. The conditions of 
guaranteeing consistency are investigated and are used to detect the inconsistencies. 
The inconsistency patterns between two authorization policies are presented and vali-
dated in a case study.  

The rest of this paper consists as follows. Section 2 provides the background 
knowledge and terms to understand this paper. In section 3, the conditions of guaran-
teeing consistency are formally specified and inconsistencies are analyzed. In Section 
4, the conditions of guaranteeing consistency are validated through a case study. 
Finally, the conclusions and future work are presented in Section 5. 

2   Background 

2.1   RBAC Model 

The concept of RBAC began 
with multi-user and multi-
application on-line systems 
pioneered in the 1970s [1, 2, 
4, 9, 10]. The RBAC model 
can effectively manage users 
and their permissions using 
the role concept. In RBAC, 
permissions are associated 
with roles, and users are made 
members of roles, thereby 
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Fig. 2. Distributed component environment 

acquiring the users’ permissions. This basic concept has the advantage of simplifying 
the understanding and management of permissions. Fig. 1 is a conceptual diagram on 
the RBAC96 model  [9]. The model has four elements: users, roles, permissions and 
sessions. A user (U) represents a human activity or an autonomous agent, while a role 
(R) is a job function or job title within an organization with some associated seman-
tics regarding the authority and responsibility conferred on a member of the role [1, 2, 
9]. A permission (P) is an approval of a particular mode of access to one or more 
objects in the system. As shown in Fig. 1, both User Assignment (UA) and Permis-
sion Assignment (PA) have many-to-many relations. A constraint specifies rules 
which must be observed in UA and PA. Role Hierarchy (RH) specifies a hierarchical 
structure of roles and is a specific form of the constraint. A senior role inherits the 
permissions of its junior ones through the hierarchy. 

2.2   Distributed Component Environment 

The general schema of distributed component environment is shown in Fig. 2. The 
components are distributed and deployed in many application servers, and a client 
program invokes remote interfaces of the components through a network. A compo-
nent can call remote interfaces of other components independent on the location of 
the application server in which it is deployed. Each application server provides the 
authentication service by interacting with various kinds of authentication servers, and 
the authorization service by interacting with the RBAC server.  

Generally, an authorization policy is composed of User Assignment Information 
(UAI) and Permission Assignment Information (PAI). Since the permission means 
the remote interface of component, the user can only call the remote interfaces as-
signed to their own roles. UAI and PAI are located in the RBAC server to provide 
necessary information to authentication servers whenever they request. The authenti-
cation servers confirm the UAI whenever a user logs in. PAI is used to describe who 
can be acces-
sible to the calla-
ble remote inter-
faces of a com-
ponent. To check 
out authorization 
efficiently, the 
components with 
their PAI are dis-
tributed in the 
application ser-
vers and the ap-
plication servers 
perform the ac-
cess control ac-
cording to the 
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PAI of the components. In this case, it is less concerned to consider the network traf-
fic due to this distribution because the PAI should be confirmed whenever an authen-
ticated user calls any remote interfaces.  

The RBAC server manages UAI and PAI of all components, and guarantees the in-
tegrity of UAI and PAI using the UA and PA constraints [1, 6, 9]. However, it is 
evitable that the policy inconsistencies between the RBAC server and the application 
servers occur while the components and the authorization requirements are changed. 
It is necessary to maintain the policy consistencies. However, a few researches on 
policy inconsistency detection based on RBAC have been done, especially, in rap-
idly-changing distributed component environment. Thus, this paper investigates the 
conditions to detect component policy inconsistencies in the rapidly-changing envi-
ronment. 

3   Inconsistency of Authorization Policy 

The basic elements [1, 9] and the specification of the policy inconsistencies are pre-
sented in Fig. 3. The RBAC server references the RBAC96 definition and is enhanced 
by new functions. The component is newly added to specify component policies. 

3.1   Conditions of Guaranteeing Consistency 

Definition 1 is to define the condition of guaranteeing consistency. If Definition 1 is 
satisfied, consistency is guaranteed. Otherwise, inconsistency may exist. In this way, 
the conditions are used to detect the inconsistencies. Theorem 1 and Theorem 2 are 
defined based on Fig.3.  

Definition 1 (Conditions of guaranteeing consistency). In order to guarantee policy 
consistencies between the RBAC server and the distributed components, Theorem 1 
and Theorem 2 should be satisfied. 

Theorem 1. The union set of permissions assigned to role cr in the policies of all 
components is equal to the set of permissions assigned to the role cr in the policy of 
the RBAC server.  

The formal specification for Theorem 1 is as follows:  

cr ( �
r

k 1=
Cperms(cr, ck)  =  perms(cr) )  

Proof. The union set of permissions assigned to role cr in the policies of all compo-
nents is all remote interfaces that role cr can access. Therefore the set of permissions 
assigned to role cr in the RBAC server should also be the same as these interfaces. 

If  �
r

k 1=
Cperms(cr, ck)  perms(crm) and Theorem 1 is not satisfied accordingly, 

then the interfaces, which are accessible by the RBAC server, are prevented by a 

component, and hence an inconsistency takes place. If �
r

k 1=
Cperms(cr, ck)  

perms(crm) and Theorem 1 is not satisfied accordingly, then the interfaces, which are  
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accessible by a component, are prevented by the RBAC server and hence an inconsis-
tency takes place. 

Theorem 2. The set of roles to which permission cp is assigned in policy of compo-
nent c is equal to the set of roles to which permission cp is assigned in policy of the 
RBAC server. 

The formal specification for Theorem 2 is as follows: 

c cp (Croles(cp, c) = roles(cp))    

1) RBAC server  
R = a set of all roles, {r

1
,. .. . .,r

n
}  

P = a set of all permissions, { p
1
,. .. ., p

o
}  

PA � P × R, a many-to-many permission-to-role assignment relation.  
perms : R � 2P,  

a function mapping each role r
a 
to a set of permissions. (1 ��� ��)  

perms(r
a
) = {p � P | (p, r

a
) � PA},  

a function returns all permissions that are assigned r
a
.  

roles :  P � 2R,  
a function mapping each permission p

b 
to a set of roles. (1 ��� ��)  

roles(pb) = {r � R | (p
b
, r) � PA},  

a function returns all roles that p
b 
is

 
assigned.  

2) Component  
C = a set of all components, {c

1
,. .. . .,c

r
}  

has_roles(c
k
) = CR, a set of roles belonged to authorization policy of component c

k,  

{cr
1
,. .. . ,cr

s
}, CR � R, (1   k   r)  

has_perms(c
k
) = CP, a set of permissions belonged to authorization policy of component  

c
k, 
{cp

1
,. .. . ,cp

t
}, CP � P  

CPA � CR × CP,  
a many-to-many permission(cp)-to-role(cr) assignment relation. 

Cperms : CR � 2CP,  
a function mapping each role cr

m 
to a set of permission cp. (1  m   s) 

Cperms(cr
m 
,c

k
) = {cp � has_perms(c

k
) | (cp, cr

m
) � CPA}, a function returns all  

permission cp assigned cr
m 
in authorization policy of component c

k
 . 

Croles : CP � 2CR,  
a function mapping each permission cp

n
 to a set of role cr. (1 � n   t)  

Croles(cp
n, 
c

k
) = {cr � has_roles(c

k
) | (cp

n
, cr) � CPA}, a function returns all role  

cr which has permission cp
n 
in authorization policy of component c

k
. 

Fig. 3. Basic element and function for authorization policy specification 

Proof. The roles, to which permission cp is assigned, are all the roles accessible to 
permission cp in the policy of component c. Therefore, these roles should be identical 
to the roles to which permission cp is assigned in the policy of the RBAC server. If 
(Croles(cp, ck)  roles(cp)) and Theorem 2 is not satisfied accordingly, then a role, 
which is accessible to cp by the RBAC server, is prevented by the component ck, and 
hence an inconsistency take place. If (Croles(cp, ck)  roles(cp)) and Theorem 2 is 
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not satisfied accordingly, then a role, which is accessible to cp by the component ck, is 
prevented by the RBAC server, and hence an inconsistency take place.  

3.2   Classification of Inconsistency 

3.2.1   Inconsistency by RBAC Server Change 
If following changes are made in the policy of the RBAC server, an inconsistency 
exists with the policy of distributed components.  

1) Inconsistency 1: IC1 (Role Addition) 
If the new role rn+1 is added to R, rn+1 is assigned to the callable remote interface p of 
the component and becomes perms(rn+1) = { p ∈ P | (p, rn+1)  PA }. That is, there 
exist interfaces assigned to rn+1. Therefore, the policy of component ck, which has 
remote interface p, should be allowed to access rn+1. However, an inconsistency arises 
between two policies, since rn+1 ∈ roles(p) but rn+1 ∉ Croles(p, ck). In this case, the 
user, who assigns to rn+1 due to the inconsistency, can’t call the remote interface as-
signed to rn+1.  

2) Inconsistency 2: IC2 (Role Deletion)  
If role ra (1 ��� ��) is deleted from R, assignment information for a user and the 
remote interface assigned to ra is deleted along with it. Therefore, perms(ra) = ∅ and 
no user is assigned to ra. However, there exists component ck with ra ∈ has_roles(ck), 
and Cperms(ra, ck) ≠ ∅, therefore an inconsistency arises. In this case, because of the 
inconsistency, ck’s policy still allows the user assigned role ra to access. Although the 
user assigned role ra doesn’t exist, the potential problem may exist owing to the user 
access. 

3) Inconsistency 3 (Role Modification)  
Role modification means that PAI is modified. That is, a new permission is assigned 
to a specific role, or the existing assignment is deleted from it. The modified role 
name is replaced by role deletion and role addition.  

� Inconsistency 3-1: IC3-1 (Permission Assignment Addition)  
This means that a permission, which was not assigned to a particular role, is 
newly assigned to the role. That is, if permission p is added to role ra, p ∈ 
perms(ra) and user assigned to ra can access p. However, there exists p ∉ 
Cperms(ra, ck) in the policy of component ck which has p, thus inconsistency 
arises. In this case, user assigned to ra cannot call remote interface p and then not 
receive wanted service. 

� Inconsistency 3-2: IC3-2 (Permission Assignment Deletion) 
This means that a permission assigned to a particular role is deleted from the 
role. Only permission assignment is deleted from the policies. The permission it-
self still exists and can be assigned to other roles. If permission p is deleted from 
role ra, p ∉ perms(ra) and user assigned to ra cannot access p. However, if there 
exists p ∈ Cperms(ra, ck) in the policy of component ck which has p, thus incon-
sistency arises. In this case, user assigned to ra still can call remote interface p.  
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4) Permission Modification 
Though security manager can manage the role and permission assignment, it cannot 
create, modify, or delete remote interfaces by itself. Because all permissions in the 
RBAC policy should belong to the component as a remote interface, the permission 
modification depends on the change in the component deployed in the application 
server. Therefore, the permission modification is not considered change of the RBAC 
server. 

3.2.2   Inconsistency by Component Policy Changes 
If the following changes are made in an application server, the inconsistency occurs 
with the policies of the RBAC server. Because the creation and deletion of role is the 
own operation of security manager in RBAC side, these are not considered during the 
preparation of component policy.  

1) Inconsistency 4: IC4 (Component Addition) 
If a new component ck is deployed to the application server, the added ck will have 
arbitrary policy. Since ck is not registered to the RBAC server, roles(cp) = ∅ on cp 
(cp ∈ has_perms(ck)). However, Croles(cp, ck) ≠ ∅, thus inconsistency arises. In this 
case, the stability of access to added component cannot be guaranteed because remote 
interface call which is not allowed by the RBAC server can be allowed by ck.  

2) Inconsistency 5: IC5 (Component Deletion) 
If component ck is deleted from the application server, ck’s policy is deleted along 
with it, thus Cperms(ra, ck) = ∅. However, if there is no synchronization, there exists 
permission which belongs to ck among the elements of perms(ra), thus inconsistency 
arises. There is no security problem due to the access to the deleted component, be-
cause the component itself does not exist. 

3) Inconsistency 6 (Component Modification)  
The component modification means that a component policy is modified as remote 
interface is added to or deleted from component, or that only policy is modified with-
out change in a component itself.  

• Inconsistency 6-1: IC6-1 (Interface Assignment Addition) 
If interface p is newly assigned to role ra in component ck‘s policy, p ∈ 
Cperms(ra, ck) but p ∉ perms(ra), thus inconsistency arises. In this case, ck allows 
service that is not allowed by the RBAC server, thus the security problem arises.  

• Inconsistency 6-2: IC6-2 (Interface Assignment Deletion) 
If interface p is deleted from role ra in component ck‘s policy, p ∉ Cperms(ra, ck) 
but p ∈ perms(ra), thus inconsistency arises. In this case, ck dose not allow per-
mission that is allowed by the RBAC server, thus user can not receive service 
which is allowed for oneself. In case that inconsistency arises as ck‘s remote in-
terface p is deleted, security problem does not arise, since deleted remote inter-
face does not exist.  
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4   A Case Study 

The purpose of this case study is to validate the proposed conditions of guaranteeing 
consistency. The proposed conditions to detect all inconsistencies (IC1 ~ IC6-2) de-
scribed in section 3.2 are applied into a hypothetical component-based application. 
The procedure of the validation is to investigate all the inconsistencies manually 
(without using the proposed conditions), detect all inconsistencies (IC1 ~ IC6-2) 
based on the proposed conditions, and compare these two results to examine whether 
the proposed conditions can detect all manually-investigated inconsistencies (IC1 ~ 
IC6-2). 

Fig. 4 (a) shows that four inconsistencies (IC1 ~ IC3-2) are occurred by the 
changes of the RBAC server. The Fig. 4 (b) shows that four inconsistencies (IC4 ~ 
IC6-2) are occurred by the changes of the component policies. Two directed arrows 
point to the exact part where inconsistency arises. In Fig.4 (a), the directed arrows 
point to added or deleted roles. Since deleted roles do not exist, they are presented in 
gray. The added permissions are presented in gray boxes and the deleted permissions 
are presented in gray circles. In Fig.4 (b), the deleted components are also presented 
in gray, since they do not exist. Interfaces added to component are presented in boxes, 
and deleted interfaces are presented in gray ellipses. 

The result of  Table 1 shows that Definition 1 can detect eight inconsistencies (IC1 
~ IC6-2). That is, if Definition 1 is satisfied, the inconsistency is not occurred. Con-
sequently the integrity of component policies can be guaranteed.  

The below shows the process of truth value creation for each row of Table 1. 

Table 1. Result of inconsistencies detection 

Condition
Inconsistency 

Theorem 1 Theorem 2 Definition 1  

Role Addition : IC1 
(Add Role Adult User) 

<True> <False> <False> 

Role Deletion : IC2 
(Delete Role Super User) 

<False> <False> <False> 

Permission Assignment Addition: IC3-1 
( Add Permission h) 

<False> <True> <False> 

Permission Assignment Deletion : IC3-2 
( Delete Permission g ) 

<False> < False> <False> 

Component Addition : IC4 
( Add Component C ) 

<False> <False> <False> 

Component Deletion : IC5 
( Delete Component B ) 

<False> <True> <False> 

Interface Assignment Addition : IC6-1 
( Add Interface n ) 

<False> <False> <False> 

Interface Assignment Deletion : IC6-2 
( Delete Interface a ) 

<False> <True> <False> 

 

1) Inconsistency 1  
If a role, Adult User, is added, the Theorem 2 is as follows: 

Theorem 2: roles(a) ≠ Croles(a, A) 
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roles(a) = { User, Administrator, Super User, Adult User }  
Croles(a, A) = { User, Administrator, Super User }    

Because Theorem 2 is false, Definition 1 can detect inconsistency 1(IC1)   

2) Inconsistency 2  
If a role, Super Use, is deleted, the Theorem 1 is as follows: 

Theorem 1: �
2

1=k

Cperms(Super User, ck) ≠ perms(Super User) 

�
2

1=k

Cperms(Super User, ck)={a, b, c, f}, perms(Super User) = ∅ 

Because Theorem 1 is false, Definition 1 can detect inconsistency 2 (IC2) 

3) Inconsistency 3-1  
If the permission h is added to a role, User, the Theorem 1 is as follows: 

Theorem 1: �
2

1=k

Cperms( User, ck) ≠ perms( User) 

�
2

1=k
Cperms( User, ck) = {a, b, c, f}, perms( User) = {a, b, c, f, h}  

Because Theorem 1 is false, Definition 1 can detect inconsistency 3-1 (IC3-1) 

4) Inconsistency 3-2  
If the permission g is deleted from a role, Administrator, the Theorem 1 is as fol-
lows: 

Theorem 1: �
2

1=k

Cperms( Administrator, ck ) ≠ perms( Administrator ) 

�
2

1=k

Cperms( Administrator, ck ) = { a, b, c, e, f, g, h }    

perms( Administrator ) = { a, b, c, e, f, h }  
Because Theorem 1 is false, Definition 1 can detect inconsistency 3-2 (IC3-2)   

5) Inconsistency 4  
If component C is added, the Theorem 2 is as follows: 

Theorem 2: roles(i) ≠ Croles(i, C) 
roles(i) = ∅, Croles(i, C) = { Administrator }    

Because Theorem 2 is false, Definition 1 can detect inconsistency 4 (IC4)   

6) Inconsistency 5  
If component C is deleted, the Theorem 1 is as follows: 

Theorem 1: �
1

1=k
Cperms(User, ck) ≠ perms(User)  

�
1

1=k
Cperms(User, ck) = { b, c }, perms(User) = { b, c, f, h } 

Because Theorem 1 is false, Definition 1 can detect inconsistency 5 (IC5)  
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7) Inconsistency 6-1  
If permission n is added to component A, the Theorem 2 is as follows: 

Theorem 2: roles(n) ≠ Croles(n, A) 
roles(n) = ∅, Croles(n, A) = { Adult User }    

Because Theorem 2 is false, Definition 1 can detect inconsistency 6-1 (IC6-1)  

8) Inconsistency 6-2  
If permission a is deleted from component A, the Theorem 1 is as follows: 

Theorem 1: �
2

1=k

Cperms( User, ck ) ≠ perms( User ) 

�
2

1=k

Cperms( User, ck )={b, c, f, h}, perms( User )={a, b, c, f, h}  

Because Theorem 1 is false, Definition 1 can detect inconsistency 6-2 (IC6-2) 

Definition 1 keeps up the consistency of the authorization policies between the 
component and the RBAC server. A security manager can effectively manage the 
authorization policies of many components through Definition 1. If the inconsistency 
is detected between two policies, the inconsistency with synchronization process 
needs to be solved. Definition 1 is used as criteria which decide that synchronization 
is successfully performed as well.  

5   Conclusions 

The component is distributed on a network with its authorization policies. On the 
other hand the RBAC server manages all component authorization policies in the 
same domains and guarantees the integrity of policies. Therefore in order to satisfy 
access control, it is necessary to guarantee the authorization policy consistency be-
tween the RBAC server and the components.  

In this paper, the conditions to detect inconsistencies are proposed. The conditions 
of guaranteeing the integrity of component authorization policies are also proposed. 
In a case study, the conditions are validated and are used to analyze the inconsisten-
cies. A consistency checking tool based on the proposed conditions can be developed 
and enable to detect inconsistencies of component authorization policies without 
significant efforts. 

For future studies, it is necessary to study on the synchronization algorithms which 
can solve the detected inconsistency using the proposed conditions. The automated 
inconsistency detection tool and an inconsistency solver based on the synchronization 
algorithms are under development.  
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Abstract. In a verifiable encryption, an asymmetrically encrypted ci-
phertext can be publicly verified to be decipherable by a designated re-
ceiver while maintaining the semantic security of the message [2, 6, 9]. In
this paper, we introduce Custodian-Hiding Verifiable Encryption, where
it can be publicly verified that there exists at least one custodian (user),
out of a designated group of n custodians (users), who can decrypt the
message, while the semantic security of the message and the anonymity
of the actual decryptor are maintained. Our scheme is proven secure in
the random oracle model. We also introduce two extensions to decryp-
tion by a subset of more than one user.

Keywords: Verifiable Encryption, Publicly Verifiable, Anonymity

1 Introduction

We introduce the new paradigm custodian-hiding verifiable encryption, CH-VE.
It allows a sender to verifiably encrypt a message to a group of receivers in a
way that only one of them is able to decrypt it. In addition, any public verifier
can ascertain this fact while he knows nothing about the plaintext and cannot
compute the identity of the actual decryptor. Before formal definitions, we give
a few motivating applications of CH-VE.

First consider the following scenario. Alice wants to send a public-key en-
crypted message to Bob, who works for ABC Company. For some security rea-
son the company gateway system does not allow the message in unless it is for
a company employee. However, Bob does not wish to divulge his private key.
Without knowing Bob’s private key, how can the gateway ensure the message
is intended for a company employee? Furthermore, Alice and Bob do not want
the company gateway to know that Bob is the actual recipient. By knowing only
the public information of the company employees, the gateway system has to
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determine if the encrypted incoming data is for a company employee without
being able to identify the actual recipient. In addition, other employees of the
company should not be involved in the secret communication between Alice and
Bob and should be totally unaware of the entire process.

Another scenario is about key escrow. In a key escrow, Alice encrypts a
secret key under the public key of a custodian and sends to an organization or
a government this ciphertext together with a proof that the ciphertext is indeed
an encryption of her own secret key. In order to increase the level of trust, n
custodians maybe used instead of one single custodian. The key is shared among
a particular set of t custodians so that only by these t custodians cooperating
together can decrypt the secret of Alice while other subset of custodians cannot
do so. It is more secure as the organization or the government does not know
which particular t custodians know the secret. It takes an exponential time to
find out which those t custodians are if t is equal to half of n.

In this paper, we present solutions to the above problems as well as some
other application problems. Below, we briefly review verifiable encryption before
introducing custodian-hiding verifiable encryption.

Verifiable Encryption. A verifiable encryption [20, 2, 6, 4, 9] allows a prover to
encrypt a message and sends to a receiver such that the ciphertext is publicly
verifiable. That is, any verifier can ensure the ciphertext can be decrypted by the
receiver yet knowing nothing about the plaintext. There are numerous applica-
tions of verifiable encryption. For example, in a publicly verifiable secret sharing
scheme [20], a dealer shares a secret with several parties such that another third
party can verify that the sharing was done correctly. This can be done by verifi-
ably encrypting each shares under the public key of the corresponding party and
proves to the third party that the ciphertext encrypt the correct shares. Another
scenario is in a fair exchange environment [2], in which both parties want to ex-
change some information such that either each party obtain the other’s data, or
neither party does. One approach is to let both parties verifiably encrypt their
data to each other under the public key of a trusted party and then to reveal
their data. If one party refuses to do so, the other can go to the trusted party
to obtain the required data. Verifiable encryption can be also applied in revok-
able anonymous credential [7]. When the administration organization issues a
credential, it verifiably encrypts enough information under the public key of the
anonymity revocation manager, so that later if the identity of the credential
owner needs to be revealed, this information can be decrypted.

Custodian-Hiding Verifiable Encryption (CH-VE). In a Custodian-
Hiding Verifiable Encryption (CH-VE), a Prover is to send a public-key en-
crypted message to one among n Custodians through a Verifier. The Prover and
the Verifier agree upon a group of n public keys, and then conduct an interac-
tive protocol such that, if the Verifier is satisfied and relays a ciphertext from
Prover to the n decryptors, at least one of the decryptor can recover the mes-
sage. Furthermore, the message is semantically secure to the Verifier, and the
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identity of the actual decryptor is anonymous to the Verifier. CH-VE can solve
the motivating applications earlier.

Receiver-Oblivious Transfer. CH-VE can be also regarded as a form of
“Receiver-Oblivious Transfer”. It is a dual to the following equivalent formu-
lation of (interactive) Oblivious Transfer (OT) [18, 15, 5, 11–13,1, 17]:

1. Verifier sends auxiliary encryption parameters.
2. Sender encrypts n messages to n public keys.
3. Verifier processes and then relays n ciphertexts to n Decryptors, at most one

Decryptor can recover its message.

CH-VE does the following:

1. Sender sends n ciphertexts.
2. Verifier challenges. If satisfied with responses, relays ciphertexts to n De-

cryptors, at least one Decryptor can recover its message.

In OT, Sender is oblivious of the identity of the capable Decryptor. In CH-VE,
Verifier is oblivious of the identity of the capable Decryptor. From this per-
spective, we consider CH-VE as a dual paradigm to the important fundamental
paradigm of OT.

We also introduce two extensions. In the first extension a targeted subset of
t custodians (out of n) jointly recover the message. In the second extension, any
member of a targeted subset of t custodians can recover the encrypted message.
Both extensions preserve the anonymity of the targeted subset.

These extensions can be useful in the following scenario. Bob belongs to a
cluster of t members in a group of n members. For example, the cluster can
be a small unit in a temporarily formed task force for a special mission. Our
extension schemes can be used to transmit confidential messages to the unit,
or to unit members, while keeping non-unit members of the task force and the
security gateway of the task force at bay.

Contributions: We introduce a new paradigm: Custodian-Hiding Verifiable
Encryption (CH-VE), which is an extension of (ordinary) Verifiable Encryp-
tion (VE). It retains the basic properties of VE: Message is encrypted to a
designated decryptor/custodian in such a way that a public third party can
verify that fact while knowing nothing about the plaintext. CH-VE adds the
following basic anonymizing property: The decryptor/custodian is anonymized,
in such a way that it is indistinguishable/hidden among a designated group
of n decryptors/custodians. The public verifier can ensure one of the n decryp-
tors/custodians can actually decrypt the message, but the verifier cannot identify
the actual decryptor.

We present formal security models and definitions of security notions of CH-
VE. The models are very strong models, formulating the anonymity in terms of
IND-CCA2 games, with random oracle, decryptor oracle, and colluder oracle.

We present two constructions of CH-VE for DL homomorphic image. The
cut-and-choose methodology is used [2, 6]. The schemes are proven secure in the
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random oracle model. The security is reduced to that of the hashing and the
underlying encryption. The second of our constructions is secure against some
Decryptors colluding with Verifier.

Our schemes support perfectly separability [16, 8], where Decryptors can use
different encryption functions.

We also introduce the new paradigm of Custodian-Hiding Group Verifiable
Encryption (CH-GVE). The first one requires a particular subset of t custodians
out of n custodians to work jointly in decrypting the message while other subsets
cannot. The second extension allows any member of a particular subset of t
custodians to decrypt the message while members outside this subset cannot.
Both extensions preserve the anonymity of the targeted decipherers.

The CH-VE is different from Group VE of [6]. The latter can verify encryp-
tion to a group of n decryptors where any subset of decryptors satisfying an
access structure can recover the message. However, the Verifier always knows
the entire access structure, and therefore knows which subset of decryptors can
recover. There is no anonymizing of the designated decryptors. In CH-VE, the
identities of the designated decryptors who can jointly recover is anonymized,
and uncomputable by the Verifier.

Organization: This paper is organized as follows. We describe some related
work in Sec. 2. This is followed by our security model specified in Sec. 3. Our
basic schemes are described in Sec. 4. The paper is concluded in Sec. 5.

2 Related Work

Verifiable Encryption (VE) was first introduced by Stadler [20] in 1996 for the use
of publicly verifiable secret sharing scheme [10]. The VE is based on ElGamal’s
public key system [14]. It allows a public verifier to determine if a ciphertext con-
tains the discrete logarithm of a given value without decrypting it. The scheme
uses the cut-and-choose methodology. Later, Asokan, et al. [2] presented a very
general cut-and-choose based VE for encryption of pre-image of any homomor-
phic one-way function. Their scheme also provides perfect separability in such
a way that the scheme can take any type of encryption algorithm and encryp-
tion key associated to the receiver. Camenisch, et al. [6] proposed another VE
which is also perfectly separable and is proven secure without relying on random
oracle. It is not limited to homomorphic one-way function but generalized to
any boolean relation. Bao [4] proposed a deterministic VE for discrete logarithm
without using the cut-and-choose methodology. Camenisch, et al. [9] propose
another VE for discrete logarithm without using cut-and-choose methodology
and achieved provable security under chosen-ciphertext-attack security model.
Ateniese [3] also propose an efficient VE for digital signatures.

In all the above schemes the verifier knows the identity of the receiver. An
anonymous verifiable encryption scheme proposed by Camenisch, et al. [7] hides
the identity of the receiver from the verifier. Their scheme requires the prover
to know the private key of the receiver.
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Comparisons with Group Verifiable Encryption (GVE) [6]: Camenishch
and Damg̊ard proposed two schemes in [6]. The first one is a VE scheme which is
targeted for one decryptor only. The second one is a Group VE (GVE) scheme
which is targeted for any t decryptors. They allow the prover to choose an
access structure Γ for a group of n receivers such that any subset of t members
can jointly recover the message. The access structure can be instantiated by a
secret sharing scheme. That is, the prover divides the message m into n pieces of
shares m1, . . . , mn such that any t of them are enough to reconstruct m. Then he
encrypts mi using the encryption function of user i, for i = 1, . . . , n, and sends
all ciphertext to the verifier. It is clear that the message m can be reconstructed
if any t users decrypt their corresponding ciphertext to get the shares.

In summary, their GVE scheme is a threshold version of their VE scheme by
using a secret-sharing scheme to share the escrowed information such that any
qualified subset (under the access structure) of custodians/decryptors can jointly
recover the information. But the Verifier knows the identities of each subset of
custodians who can recover the information.

Our proposed CH-VE basic scheme hides the identity of the one targeted
custodian among n possible custodians. Others n − 1 custodians cannot de-
crypt the message. The identity of the “trusted” or “designated” custodian is
anonymized to n possible custodians. Our extensions, the CH-GVE schemes de-
ploy some threshold-sharing technique of the escrowed secret (plaintext message)
to t possible custodians and hiding the identity of the t “trusted” or “designated”
custodians among n possible custodians (in certain ways).

In general, all our proposed scheme allows the escrowed information to be
shared out among a specific subgroup of t custodians. The Verifier is assured
that there exists t among the total population of n custodians that can recover
the escrowed information, but the Verifier cannot compute the identities of these
t custodians.

3 Security Model

In this section we define the security model to be used.
An CH-VE scheme is a tuple (G, P, V, R). Components specified below.
A PPT (polynomial probabilistic time) algorithm G(1λs), on input security

parameter λs, generates n pairs of encryption functions Ei (with public key PKi)
and decryption functions Di (with private key SKi), for i = 1, . . . , n, which are
secure against chosen-ciphertext attack [19].

There is a two-party PPT protocol between P (Prover) and V (Verifier), a
PPT algorithm R (Recovery Algorithm), also known as the Decryption Algo-
rithm, and a homomorphic one-way function f . P accepts as inputs the security
parameter λs, some appropriate binary string m (a message), n public-key en-
cryption functions {Ei}1≤i≤n which are secure against chosen-ciphertext attack
[19], and an integer π ∈ {1, · · · , n} (the index of the actual decryptor). V accepts
as inputs λs, f and {Ei}1≤i≤n only. If the protocol completes without early ter-
mination, V outputs two finite binary strings d = f(m) (homomorphic image)
and C (ciphertext). We call it successful. Otherwise, V outputs Reject.
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The Recovery Algorithm R : (d, C, Di) �→ {m′, NULL} accepts as inputs
the homomorphic image, the ciphertext and one of the n decryption functions
corresponding to {Ei}1≤i≤n and outputs either a finite string m′ or the NULL
string.

We formulate the security definition more precisely as below:

Definition 1. The CH-VE scheme is complete if V always outputs homomor-
phic image d and ciphertext C such that R(C, Dπ) = m and d = f(m) for some
1 ≤ π ≤ n, for arbitrary input m, homomorphic image d and ciphertext C satis-
fying d = f(m), whenever both P and V are honest.

Definition 2. The CH-VE scheme is sound if, whenever V completes a protocol
run without early termination and outputs homomorphic image d and ciphertext
C, then with overwhelming probability f(R(C, Dπ)) = d for some π, 1 ≤ π ≤ n.

Next we define some oracles we are going to use in this model:

Prover Oracle PO: Upon query, it interacts with the querier in the role of the
Prover P .

Decryption Oracle DO: Upon input a ciphertext, decrypt it or output Reject
on invalid ciphertext.

Colluder Oracle CO: Upon input a public key generated by G, output its
corresponding secret key.

We define a game, Game D, between Adversary A and Simulator S:

1. Setup Phase: Algorithm G is invoked to generate n key pairs. The public
keys PK1, · · ·, PKn, are published.

2. Probe-1 Phase: A queries DO, PO, and CO.
3. Gauntlet Phase: A generates message m1, decryptor identity π1, 1 ≤ π1 ≤ n,

and give them to S. S generates message m0, decryptor identity π0, and
bG ∈R {0, 1}; computes and sends to A the CH-VE encryption, consisting
of homomorphic image d and ciphertext C, of message mbG targeted for
decryptor πbG .

4. Probe-2 Phase: A interacts, as Verifier, with S as an honest Prover while
querying DO, PO, and CO. Except A cannot query DO with the gauntlet
ciphertext C.

5. Output Phase: A outputs its estimate b̂G of bG

We say A wins the Game if b̂G = bG. There are two sub-games: Game D-C:
π0 = π1 and S chooses m0 randomly. The advantage of A is its probability of
winning the game, minus 1/2. Game D-A: m0 = m1, S choses π0 randomly
from {1, · · · , n} \ {π1}. The advantage of A is its probability of winning the
game, minus the probability of winning the game by random guessing. The
latter probability equals 1

2 (1 + qC

n−1 ) where qC is the number of Colluder Oracle
queries. We require qC ≤ n− 1, and A cannot query CO with PKπ1 .

Definition 3. (Zero Knowledge) The CH-VE scheme is zero-knowledge if no
PPT adversary A can win Game D-C or Game D-A with non-negligibly advan-
tage. It is no-colluder zero-knowledge if no PPT adversary A can win Game



Custodian-Hiding Verifiable Encryption 57

D-C or Game D-A with non-negligibly advantage without making any query to
the Colluder Oracle.

Definition 4. A CH-VE scheme is secure if it is complete, sound, and zero-
knowledge. It is no-colluder secure if it is complete, sound, and no-colluder zero-
knowledge.

Remark: In Game D-C and when bG = 0, the honest prover S does not use m1

at all. This fact can be used to prove that our zero knowledge implies the zero
knowledge in Asokan, et al.[2], p.599, l.13.

4 Secure Custodian Hiding Verifiable Encryption
(CH-VE) Schemes

We specify two schemes in this section. The first scheme is a no-colluder-secure
CH-VE scheme while the second one is secure even with the existence of col-
luders. Both schemes use the 3-choice cut-and-choose methodology. In each of
N cut-and-choose rounds, a three-move protocol (commit, challenge, respond)
is conducted between Prover P and Verifier V . V flips a three-way coin to issue
one of three possible challenges. Depending on the challenge, P provides suitable
response. If all cut-and-choose rounds are satisfactory, V outputs a image d and
a ciphertext C. Otherwise, it aborts. Each receiver i attempts to decipher using
its own asymmetric decryption function Di, 1 ≤ i ≤ n. At least one receiver will
succeed.

4.1 A No-Colluder-Secure CH-VE Scheme

Let (Ei, Di), 1 ≤ i ≤ n, be secure public-key encryption and decryption functions
generated by G. Let π index the targeted receiver. Let p, q be large primes, q | p−1,
and g ∈ Fp, order(g)=q. Let the security parameter λs be as large as |q|. Let f be
defined by x→ gx which is an instantiation of the one-way group homomorphism
from Zq to <g>.

Let m ∈ Zq be a message. Let N be the number of cut-and-choose rounds. Let
H1 : {0, 1}∗ → {0, 1}λs and H2 : {0, 1}∗ → Zq be some statistically independent
and cryptographically strong hash functions.

Sometimes, we may pass in an element in Zq for encryption and we implicitly
assume that certain appropriate encoding method is applied.

When the Prover P computes any probabilistic public-key encryption func-
tion, P needs to send the corresponding coin flip sequence to the Verifier V and
the sequence is to be carried on wherever the original message goes. We do not
explicitly specify such in the following.

Sym(n) denotes the symmetric group of order n. It consists of all permu-
tations on n objects. We instantiate a one-way homomorphic mapping of m,
typically used in VE (verifiable encryption) literature [2, 6, 9] by discrete expo-
nentiation gm, and assume DLP (discrete logarithm problem) to be secure. We
do so throughout the paper.
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[Protocol Between P and V (Encryption) (Illustrated in Figure 1)]
1. P computes d = gm mod p and sends d to V .
2. Repeat the following steps N times in parallel.

a. (Commitment) P randomly picks s ∈R Zq, ri ∈R {0, 1}λs for 1 ≤ i ≤ n,
and φ ∈R Sym(n). P computes

λ = E1(r1)|| · · · ||En(rn)
γ = (gH2(rφ(1)) mod p, · · · , gH2(rφ(n)) mod p)

α′ = E1(s)|| · · · ||En(s)
α = H1(α′)
β = gH2(rπ)s mod p

θ = H1(λ||γ||α||β)

P sends θ to V .
b. (Challenge) V picks b ∈R {1, 2, 3} and sends b to P .
c. (Response)

– Case b = 1, P sends r1, · · · , rn, γ, α and β to V
– Case b = 2, P sends λ, γ, and s to V .
– Case b = 3, P sends λ, γ, α′, and s′ = H2(rπ)s + m mod q to V .

d. (Verification by V )
– Case b = 1:

• Verify that r1, · · ·, rn are distinct.
• Verify that there exists a unique permutation δ ∈ Sym(n) such

that γ = (gH2(rδ(1)) mod p, · · · , gH2(rδ(n)) mod p)
• Verify that θ = H1(λ̂||γ||α||β) where λ̂ = E1(r1)|| · · · ||En(rn).

Continue only if all verifications succeed.
– Case b = 2:

• Denote γ = (γ1, · · · , γn).
• Compute α̃ = H1(E1(s) || · · · || En(s)) and βi = γs

i mod p, for
i = 1, · · · , n.

• Verify that θ = H1(λ || γ || α̃ || βi) for exactly one index i ∈
{1, · · · , n}.

Continue only if the verification succeeds.
– Case b = 3:

• Compute β′ = gs′
/d mod p

• Verify that θ = H1(λ||γ||H1(α′)||β′)
Continue only if the verification succeeds.

3. (Output) V terminates if any verification fails in any of the N cut-and-choose
Rounds. Otherwise, it outputs d and the four-tuple sequences (α′, λ, β′, s′)
for all Case-(b=3) Rounds to all n receivers as the ciphertext, C.

Recovery Algorithm R.
Denote λ̄1|| · · · ||λ̄n = λ and ᾱ′

1|| · · · ||ᾱ′
n = α′. For d and each four-tuple se-

quence (α′, λ, β′, s′), each receiver i, 1 ≤ i ≤ n, independently performs the
following steps.
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Prover P Verifier V

d = gm mod p
d �

Repeat N times:

s ∈R Zq

ri ∈R {0, 1}λs , 1 ≤ i ≤ n

φ ∈R Sym(n)

λ = E1(r1)|| · · · ||En(rn)

γ = (gH2(rφ(1)) mod p, · · · , gH2(rφ(n)) mod p)
α′ = E1(s)|| · · · ||En(s)

α = H1(α
′)

β = gH2(rπ)s mod p

θ = H1(λ||γ||α||β)
θ �

b ∈R {1, 2, 3}
b�

Case b = 1
r1, · · · , rn, γ, α, β �

ri

?

�= rj , ∀i, j ∈ {1, · · · , n}, i �= j

?

∃ δ ∈ Sym(n), γ = (gH2(rδ(1)), · · · , gH2(rδ(n)))
λ̂ = E1(r1)|| · · · ||En(rn)

θ
?
= (λ̂||γ||α||β)

Case b = 2
λ, γ, s �

(γ1, · · · , γn) ← γ

α̃ = H1(E1(s)|| · · · ||En(s))

βi = γs
i mod p, 1 ≤ i ≤ n

?

∃ i ∈ {1, · · · , n}, θ = H1(λ||γ||α̃||βi)
Case b = 3

s′ = H2(rπ)s + m mod q
λ, γ, α′, s′ �

β′ = gs′/d mod p

θ
?
= H1(λ||γ||H1(α

′)||β′)

If no rejection in all N rounds,

output d and (α′, λ, β′, s′) for all Case-(b = 3) rounds

Fig. 1. A custodian-hiding verifiable encryption scheme.

1. Compute ri = E−1
i (λ̄i) and s = E−1

i (ᾱ′
i).

2. Compute m′ = s′ −H2(ri)s mod q.
3. Verify that gs′

= gm′
β′ mod p. If the verification succeeds, then receiver i is

the targeted decypherer and it outputs the decrypted message m′ and halts.
Otherwise, the receiver repeats the steps for another four-tuple sequence.
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4.2 Security Analysis

Theorem 1. Our CH-VE scheme above is no-colluder secure under the random
oracle model, provided all encryptions are IND-CCA2 secure.

Proof in the Appendix.

Practical Security and Performance: We recommend N to be approximately
80 − 100 which is equivalent to about 2−64 and it should be sufficient for most
applications. We have in mind OAEP for the component encryptions and elliptic
curve is used as the homomorphic one-way function. Let the length of each
encryption be 1024 bits. The communication bandwidth is about 4096 bits for
each round. If there are 100 rounds, the total bandwidth is about 50n kbytes
and the size of the ciphertext is about 17n kbytes, where n is the number of
custodians. Our bandwidth is larger than the VE scheme of [2], for preserving
the anonymity of the actual decryptor.

4.3 A Secure Custodian Hiding Verifiable Encryption
(CH-VE) Scheme (with Colluders)

The previous CH-VE scheme is not secure if Adversary has a colluder. In that
case Adversary obtains s from Colluder, then exhaustively tests out gmb

?=
gsgH2(ri) to distinguish m0 from m1. In this section, we modify the above scheme
to provide security even in the existence of colluders. We use the same notation
as described in the first scheme unless otherwise stated.

[Protocol Between P and V (Encryption). Let L = log n]
1. P computes d = gm mod p and sends d to V .
2. Repeat the following steps N times in parallel.

a. (Commitment) P randomly picks s ∈R Zq, r
(j)
i ∈R {0, 1}λs for 1 ≤ i ≤ n,

1 ≤ j ≤ L and φj ∈R Sym(n) for 1 ≤ j ≤ L. P computes

λ(j) = E1(r
(j)
1 )|| · · · ||En(r(j)

n )

γ(j) = (g
H2(r

(j)
φj(1)) mod p, · · · , g

H2(r
(j)
φj(n)) mod p)

α′ = E1(s)|| · · · ||En(s), α = H1(α′)

β(j) = gH2(r
(j)
π )s mod p

θ(j) = H1(λ(j)||γ(j)||α||β(1) · · ·β(L))

and sends θ(j) to V , for 1 ≤ j ≤ L.
b. (Challenge) V picks b ∈R {1, 2, 3} and sends b to P .
c. (Response)

– Case b = 1, P sends r
(j)
1 , · · · , r(j)

n , γ(j), α and β(j) to V , for 1 ≤ j ≤
L.

– Case b = 2, P sends λ(j), γ(j), and s to V , for 1 ≤ j ≤ L.
– Case b = 3, P sends λ(j), γ(j), α′, and s′ = (H2(r

(1)
π ) + . . . +

H2(r
(L)
π ))s + m mod q to V , for 1 ≤ j ≤ L.
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d. (Verification by V )
– Case b = 1:

• Verify that r
(j)
1 , · · ·, r

(j)
n are distinct, for 1 ≤ j ≤ L.

• Verify that there exists a unique permutation δ ∈ Sym(n) s.t.

γ(j) = (gH2(r
(j)
δ(1)) mod p, · · · , g

H2(r
(j)
δ(n)) mod p) for 1 ≤ j ≤ L.

• Verify that θ(j) = H1(λ̂(j)||γ(j)||α||β(1) · · ·β(L)) where ˆλ(j) =
E1(r

(j)
1 )|| · · · ||En(r(j)

n ), for 1 ≤ j ≤ L.
Continue only if all verifications succeed.

– Case b = 2:
• Denote γ(j) = (γ(j)

1 , · · · , γ(j)
n ).

• Compute α̃ = H1(E1(s) || · · · || En(s)) and β
(j)
i = (γ(j)

i )s mod p,
for 1 ≤ i ≤ n, 1 ≤ j ≤ L.

• Verify that θ(j) = H1(λ(j)||γ(j)||α̃||β(1)
i1
· · ·β(L)

iL
) for exactly one

index i� ∈ {1, · · · , n}, 1 ≤ � ≤ L, 1 ≤ j ≤ L.
Continue only if the verification succeeds.

– Case b = 3:
• Compute β′ = gs′

/d mod p
• Verify that θ(j) = H1(λ(j)||γ(j)||H1(α′)||β′) for 1 ≤ j ≤ L.

Continue only if the verification succeeds.
3. (Output) V terminates if any verification fails in any of the N cut-and-choose

Rounds. Otherwise, it outputs d and the four-tuple sequences (α′, λ(j), β′, s′)
for 1 ≤ j ≤ L and for all Case-(b = 3) Rounds to all n receivers as the
ciphertext, C.

Recovery Algorithm R. Denote λ̄
(j)
1 || · · · ||λ̄

(j)
n = λ(j) and ᾱ′

1|| · · · ||ᾱ′
n = α′.

For d and each four-tuple sequence (α′, λ(j), β′, s′), 1 ≤ j ≤ L , each receiver i,
1 ≤ i ≤ n, independently performs the following steps.

1. Compute r
(j)
i = E−1

i (λ̄(j)
i ) and s = E−1

i (ᾱ′
i).

2. Compute m′ = s′ − (H2(r
(1)
i ) + . . . + H2(r

(L)
i ))s mod q.

3. Verify that gs′
= gm′

β′ mod p. If the verification succeeds, then receiver i is
the targeted decypherer and it outputs the decrypted message m′ and halts.
Otherwise, the receiver repeats the steps for another four-tuple sequence.

Theorem 2. The above CH-VE scheme is secure under the random oracle
model, provided that all encryptions are IND-CCA2 secure.

A sketch of the proof is in the Appendix.

4.4 Extensions

We present extensions of our CH-VE schemes to CH-GVE (Custodian-Hiding
Group Verifiable Encryption) schemes.
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Verifiable (t, t, n) Encryption for Anonymous Ad Hoc Groups. In our
basic VE-VE scheme, only a single targeted member can decrypt the message.
Here we make an extension such that a targeted t-member subset of the ad hoc
group of n receivers can jointly recover the message. On the notation of (t, t, n),
symbol ‘n’ represents that P spontaneously forms a group of n receivers; the
second symbol ‘t’ represents that t targeted members of the group can recover
a message; and the first symbol ‘t’ means that all the t targeted members need
to work jointly to recover the message. By using similar notation, we propose
another extension shortly which allows any member of a targeted t-member
subset of the ad hoc group of n receivers to recover the message. Hence the
notation of the second extension is (1, t, n).

Below is a (t, t, n) CH-GVE scheme.

Encryption. Here we use π1, · · · , πt to index the targeted receivers, where t < n
and π1, · · · , πt ∈ {1, · · · , n} are distinct. The encryption algorithm is similar to
the basic scheme described in Sec. 4, with the following modifications.

1. P also sends t to V before Commitment.
2. (Commitment) Compute as before, except

β = (gH2(rπ1) · gH2(rπ2) · . . . · gH2(rπt))s mod p

3. (Response) Compute as before, except that in Case b=3:

s′ = (H2(rπ1) + · · ·+ H2(rπt))s + m mod q

4. (Verification)
(a) Case b=1: Same as before.
(b) Case b=2: Process γ, α̃, βi as before. Verify

θ = H1(λ || γ|| α̃ || βi1 · · ·βit)

for a unique t-element subset {i1, · · · , it} ⊂ {1, · · · , n}.
(c) Case b=3: No change.

Decryption. Same as before, except that t targeted decypherers jointly compute

m′ = s′ − (H2(rπ1) + · · ·+ H2(rπt))s mod q

(1, t, n) CH-GVE Scheme. The (1, t, n) CH-GVE scheme allows any one in
a targeted set of t receivers to recover the encrypted message, and then the
receivers are anonymized.

Encryption. Let π1, · · · , πt be the index of t targeted receivers. The encryption
algorithm is similar to before, but with small modifications:

1. P also sends t to V before Commitment.
2. (Commitment) Same as before except

β = gH2(rπ1)s mod p || · · · || gH2(rπt)s mod p
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3. (Response) Same as before except in Case b=3, replace the original s′ with

s′i = H2(rπi)s + m mod q

for i = 1, · · · , t.
4. (Verification) Same as before except in

(a) Case b=2, verify that

θ = H1(λ || γ || α̃ || (βi1 || · · · ||βit))

for a unique t-member ordered tuples {i1, · · · , it} ⊂ {1, · · · , n}.
(b) Case b = 3, compute

β′ = gs′
1/d mod p || · · · || gs′

t/d mod p

5. (Output) Same as before except replacing the original s′ with s′1, · · · , s′t.

Decryption
– Denote β̄′

1 || · · · || β̄′
t = β′.

– Step 2 is modified as: receiver i computes m′
i,j = s′j − H2(ri)s mod q for

j = 1, · · · , t.
– Step 3 is modified as: receiver i checks if gs′

j
?= gm′

i,j β̄′
j mod p for j = 1, . . . , t.

If one of them equal, then receiver i is one of the targeted decypherers.

5 Concluding Remarks

In this paper, we propose a new paradigm of Custodian-Hiding Verifiable En-
cryption (CH-VE) which allows the prover to specify any set of n receivers
and send an encrypted message such that the verifier can make sure that the
encrypted message can be decrypted by at least one of the receivers. Yet the ver-
ifier knows nothing about the identity of the actual decryptor. The complexity
of our proposing scheme is linear in the size of the receiver group. We give two
instantiations of CH-VE with different level of security.

We believe that other intriguing and efficient CH-VE schemes and various
security models can be attained. Other variants and features may also be con-
structed. For example, it would be interesting to construct a general verifiable
(k, t, n) encryption scheme.
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Abstract. In the context of a validation server, or more general PKI
server, it could be interesting to give the server the possibility to check
whether a certain public key was used. We investigate here some pos-
sibilities. We also present an escrow system as an application of the
technology.

1 Introduction

In this paper we consider an IT system using a PKI server. Similar to the idea
of authentication servers, which can provide centralized services with respect to
access control, authentication and authorization, PKI servers provide centralized
PKI services to client applications. After proper authentication to the server, the
client can request PKI services. Such systems have been proposed in the past,
for different kinds of reasons.

The PKI server introduced here has the capability to check whether a given
ciphertext was produced with a given public key, without having access to the
message plaintext. Both purely asymmetric and hybrid encryption schemes are
considered.

This work is related to the concept of verifiable encryption [4]. Verifiable
encryption schemes allow to prove certain properties about an encrypted mes-
sage, without revealing the message. We aren’t concerned with properties of the
message however, but only examine the key used to encrypt it.

2 Background

We distinguish two classes of PKI servers. In both classes, we can further dis-
tinguish between partially trusted servers and completely trusted servers. In
general, it is more easy to design systems using completely trusted servers. One
design challenge is to reduce the required trust in centrally managed servers as
much as possible.
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2.1 Voluntary PKI Servers

By voluntary PKI servers, we mean servers that provide services which could in
principle be provided as well by the client applications. In order to reduce the
complexity of PKI applications, the functionality is centralized. We could imag-
ine a system where the functionality is provided by both the client applications
and the server, and there is some criterion to select at run-time to perform the
service locally or centrally.

A good example are validation servers that relieve the applications from
complicated tasks like certificate chain construction, certificate status check,
certificate attribute check (e.g. key usage) etc. [1, 9].

2.2 Mandatory PKI Servers

By mandatory PKI servers, we mean servers that can’t be ignored by the client
applications. The PKI trust model is based on the fact that the server plays
its role. This type of servers is introduced not only in order to solve practical
problems, but also some of the theoretical problems inherent to a distributed PKI
model, like for instance providing both non-repudiation and revocation services.

A good example here are server-aided signatures like mediated RSA [3], a
variant of RSA where the private key of the user is split into two parts, one owned
by the user and the other by a trusted server so that both parts are used during
an on-line protocol in order to create an RSA signature. On-line Trusted third
parties (TTP) involved in non-repudiation and certified email protocols [5, 11]
are another good example of mandatory PKI servers. Such TTP’s are involved
in order to provide mandatory non-repudiation evidence. The centralized PKI
system described in this paper is of this type.

2.3 Setting

When used in an organization, it might be desired to configure the PKI server
in a way that it not only provides services, but it also checks on the users/appli-
cations. For instance, it can be a policy that users/applications may not accept
a signed message unless the PKI server has validated the signature. In such a
setting, it may also be desirable that the server checks on outgoing messages.
For instance, the server could verify whether the messages are encrypted using
the proper keys.

In this paper, we study this problem: how can we give a PKI server the
power to check whether outgoing messages are encrypted using the proper key
material, without being able to read the messages.

Finding a solution to this problem can be use be useful in several settings.
One typical setting could be such that there is outgoing data to destinations
with different clearances and encryption keys at different strength levels. The
PKI server acting for instance as an enterprize secure messaging gateway, can
then check whether outgoing data has been encrypted with a key of the correct
strength.
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3 Proving Usage of a Public Key

We first discuss the situation where encryption is done with asymmetric encryp-
tion schemes. For this situation, we can reuse protocols that haven been proposed
in the literature. The schemes will mainly be useful in the next section, where
we discuss the situation of hybrid encryption.

In an asymmetric encryption setting, the PKI server sees a ciphertext c and
wants to ascertain that c is the encryption of an unknown message m under a
given public key. In many public-key schemes, an arbitrarily generated bit string
will be a valid encryption of some message. Hence, we can rephrase the goal
of the server to the verification of the fact that the sender knows the plaintext
message m.

3.1 RSA Encryption

In an RSA setting, usage of a public key can be proven in the following way.
Suppose Alice wants to send a message m, which encrypts to c = me mod n. Alice
generates a random value r, computes the witness x = re mod n and submits
the tuple (c, x). Subsequently, the PKI server generates a challenge u ∈ {0, 1}
and submits it to Alice. Alice then computes the response y = rmu mod n and
returns it to the server. Finally, the PKI server verifies whether ye = xcu.

This protocol corresponds to the Guillou-Quisquater identification protocol
[7], but here Alice proves her knowledge of the message m instead of the secret
accreditation data. Alice should not send out the same message m to many
different recipients, nor should she re-use the random values r.

3.2 Rabin Encryption

If the Rabin encryption scheme [10] is used, the ciphertext c is constructed as
c = m2 mod n. The Fiat-Shamir identification protocol [6] can be used to prove
knowledge of m without revealing m.

4 Proving Key Usage in a Hybrid Encryption Scheme

Purely asymmetric encryption is rarely used to protect messages. Instead, hybrid
encryption schemes are used. We develop here a scheme that can be used to prove
key usage in a hybrid encryption scheme.

Let P be a message to be sent out, consisting of the blocks P1, P2, P3, . . . , Pn.
In a encryption hybrid scheme, a random session key is generated and used in
a symmetric scheme to encrypt the message. The session key itself is encrypted
using an asymmetric encryption scheme.

We present now our scheme in several steps, starting from a very unpractical
setting and progressing to a more practical scheme.
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4.1 First Version

Let the message blocks be split in shares Ai, Bi with Pi = Ai ⊕ Bi. The strings
A and B are composed by concatenating the blocks Ai, respectively Bi. At the
end of each string, a redundancy block is added, e.g.

An+1 = SHA-1(A1A2 . . . An), (1)
Bn+1 = SHA-1(B1B2 . . . Bn). (2)

Two random symmetric keys KA, KB are generated. Each key is used to encrypt
one string, producing the ciphertext strings D and E.

D = encKA(A) (3)
E = encKB (B) (4)

The encrypted message consists of the two strings D, E plus the two session keys
KA, KB encrypted separately under the recipient’s public key.

When the message passes by the PKI server, it first checks whether the
encrypted session keys are indeed encrypted with the correct public key. This
can be done with the asymmetric schemes described in Section 3. Subsequently,
the server still needs to ascertain that the symmetric keys encrypted with the
public key were indeed used to encrypt the message shares. The server will do
this by choosing A or B and asking the sender to reveal the corresponding key
KA or KB. Suppose the server chooses A. Then the sender is asked to reveal KA.
The server verifies whether KA encrypts to a value it has seen. Subsequently, the
server decrypts D with KA and checks whether the last block of the decryption
indeed obeys the redundancy rule (1).

The server may ask for only one key, hence it will not learn anything about
the message. Assuming that it is not feasible to produce a string D and a key
KA that will result in a plaintext with the correct redundancy by any other
means than following the scheme, it follows that a sender who doesn’t follow the
scheme will be caught with probability at least 50%.

Note that this version of the protocol can be simplified somewhat: the PKI
server can decide not to use the protocols of Section 3 and only verify the en-
cryption of the session key it selected to be revealed. However, the public-key
protocols will be useful in the next version, described below.

4.2 Second Version

The first thing we need to improve upon, is the probability to catch cheaters,
which may be as low as 50% in the first version of our protocol. We can improve
the probability to catch cheaters by splitting up the message P in t sub-messages,
each containing a part of the blocks Pi. Each sub-message is extended with a
redundancy block and its shares are encrypted under a new pair of random keys.

For each sub-message, the server decides between A and B and asks to reveal
one key. The probability to catch a cheater increases now with the number of sub-
messages that are cheated with: for q malformed sub-messages, the probability
becomes 1− 2−q.



Proving Key Usage 69

The protocol can also be extended by having more than two shares for each
sub-message. Using s shares, from which the server may ask to reveal any set of
s− 1, the probability to cheat and not be detected reduces to s−q.

Increasing s and/or t results in having to generate and encrypt more session
keys (st in total). Hence we need a scheme to derive many session keys from a
few values. Let l denote the number of session keys we send over, then we want
a derivation scheme that allows to derive st keys in such a way that revealing
(s−1)t keys will not disclose any information on the remaining t keys. Note that
this demand is sufficient, but not necessary: not all selections of (s − 1)t keys
can be revealed in practice. We can define t sets of s keys from which at most
s− 1 are revealed. However, we can easily meet the more strict demands.

Let k be the size of a session key. Let X, Y be an l-dimensional respectively st-
dimensional (row) vector with coordinates in GF(2k). We choose l = (s−1)t+1
and compute Y as Y = X ·A. Here A is a (fixed) l×(st) matrix with the property
that all l × l sub-matrices are of full rank. If 2k > st, then matrices satisfying
these constraints can be constructed from linear codes over GF(2k), with length
st, dimension l and minimal distance t. The constraint 2k > st is easy to meet
in practical situations.

Now, in order to save on the number of session keys that need to be generated,
protected and transmitted, the following is done. The sender generates a random
value K of length l, encrypts it with the receiver’s public key and transmits it
with the message. The st session keys used to encrypt the message parts are
derived from K ·A. This allows to save the encryption and transmission of t− 1
k-bit values.

5 Application in a Key Escrow System

The type of PKI server introduced in this paper, can also be used as part of an
escrow system.

5.1 Principle

The escrow system consists of two independently operated servers. The first
escrow server is a PKI server as described above. It is on-line, sees all commu-
nication passing by and has the capability to check whether the messages are
encrypted under the proper keys. The second escrow server is off-line. It only
receives the messages that need to be decrypted. The public key of the second
server is published and available to all users.

Users who want to transmit a message, are obliged to encrypt it twice: once
with the key for the intended recipient, and once with the public key of the
second escrow server. If the users perform this double encryption dutifully, the
second escrow server can decrypt messages when required. The task of the first
escrow server is to verify whether the users follow the protocol.



70 Malek Bechlaghem and Vincent Rijmen

5.2 Message Format

Users who want to transmit a message P are obliged to encrypt it in a way
similar to discussed in Section 4. We describe the scheme using the version of
the protocol described in Section 4.1.

Let the message P consist of blocks Pi, i = 1, . . . , n. The blocks are split
into shares Ai, Bi, i = 1, . . . , n. Redundancy blocks aren’t necessary here. Four
symmetric keys are generated: KA, KB, LA, LB. The string A is encrypted with
a symmetric cipher, once under key KA to produce the ciphertext string D, and
once under key LA to produce the ciphertext string F . Similarly, B is encrypted
under KB to produce the string E, and under LB to produce the string G.

The keys KA, KB are encrypted under the public key of the recipient, and
the keys LA, LB under the the public key of the second escrow server. This allows
both the recipient and the second escrow server to recover the message P .

The PKI server executes the following steps in order to determine whether
the sender has produced messages of the correct format.

1. (Optional) Check whether the symmetric keys LA, LB have been encrypted
under the public key of the second escrow server.

2. Choose A or B and ask the sender to reveal the keys KA, LA, respectively
KB, LB.

3. Check whether the revealed symmetric key LA or LB encrypts to the value
that was received with the encrypted message.

4. Use the revealed keys to decrypt D and F , respectively E and G. Check
whether the decrypted values are equal. If the values are not equal, then the
sender didn’t follow the required format.

Senders that don’t follow the required format, are caught with probability 50%.
The system can be extended in a similar way as described in Section 4.2.

6 Related Work

In the asymmetric encryption setting, our proof of usage of a certain public key,
is in fact a proof of knowledge of the plaintext corresponding to the cipher-
text under examination. Proving knowledge of the plaintext corresponding to a
submitted ciphertext, has been called plaintext-aware encryption before [2].

Regarding proving of public key usage for encrypting messages, without hav-
ing access to the plaintext message, we know of no published papers addressing
this issue.

Our protocols are related to protocols based on verifiable encryption [4] since
we describe an entity (PKI server in our settings) that tries to find out some
property on an encrypted message while the message is given in an encrypted
form. Verifiable encryption is meant to ensure that a entity accepts the encryp-
tion of an invalid message only with negligible probability. Typically verifiable
encryption are used with digital signatures representing hence a way to encrypt
a message under a designated public key and subsequently prove that the re-
sulting ciphertext indeed contains such signature. Contrarily to protocols using
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verifiable encryption, we are only interested in proving that a designated public
key has been used to encrypt a message without having access to the plaintext
and to the decryption private key.

The schemes that we developed in this paper allow also implementing a
powerful non-repudiated message delivery authority. Such authority has been
defined in the literature [8] as providing the sender and recipient of a message
with signed, time-stamped proof of non-repudiation of origin, of receipt and of
submission. The sender and recipient can use such proofs in resolving disputes
occurring between them. Our schemes allow extending such delivery authority
with an additional feature which is making sure that the sender and recipient
exchange confidential messages so that the messages are encrypted with valid
designated keys.

7 Conclusions and Further Work

We presented the idea of a PKI server that can check which key has been used to
encrypt messages, without having access to the message plaintext. We described
asymmetric and hybrid protocols for achieving this goal. Finally, we explained
as a special application how an escrow system can be based on this PKI server.

The hybrid scheme presented in this paper is provided as a first step in a
new direction. More research is required to get more certainty about the security
level and to develop schemes that are more usable.

Secondly, we think it will be interesting to look at new applications for the
primitive introduced in this paper. We are particulary interested in developing
new non-repudiation and fair-exchange protocols.
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Abstract. In a public key encryption, we may want to enable someone
to test whether something is a keyword in a given document without leak-
ing anything else about the document. An email gateway, for example,
may be desired to test whether the email contains a keyword “urgent”
so that it could route the email accordingly, without leaking any content
to the gateway. This mechanism was referred as public key encryption
with keyword search [4]. Similarly, a user may want to enable an email
gateway to search keywords conjunctively, such as “urgent” email from
“Bob” about “finance”, without leaking anything else about the email.
We refer to this mechanism as public key encryption with conjunctive
field keyword search. In this paper, we define the security model of this
mechanism and propose two efficient schemes whose security is proved
in the random oracle model.

Keywords: Conjunctive keyword search, pairing-based cryptography

1 Introduction

Recently, Boneh, Cresenzo, Ostrovsky and Persiano proposed public key encryp-
tion with keyword search scheme (or searchable public key encryption) [4]. And,
Park, Kim and Lee provided another efficient scheme for the mechanism [12]. In
this mechanism, encrypted message has the following form:

[EApub
[M ], PEKS(Apub, (W1)), . . . ,PEKS(Apub, (Wm))]

where Apub is a receiver’s public key, M is the message, Wi’s are keywords, and
PEKS is an encryption algorithm with properties; the PEKS values do not reveal
any information about the message, but enable searching for specific keywords.

We borrow two examples in [4] to motivate searching on data that is en-
crypted using a public key system. The first example is an email gateway. Sup-
pose user Bob sends encrypted email to user Alice using Alice’s public key. Both
the contents and the keywords are encrypted. The goal of the searchable public
key encryption is that Alice can specify a few keywords that the email gateway
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can search for, but learns nothing else about incoming mail. Using the searchable
public key encryption, Alice can make the gateway route email with the keyword
“urgent” to her pager without information leakage to the gateway. Another ex-
ample is an email server which stores many emails and each email contains a
small number of keywords. All these emails created by various people are en-
crypted using Alice’s public key. Using the searchable public key encryption,
Alice can enable the server to retrieve emails containing a keyword by giving a
trapdoor. The server learns nothing else about the email.

However, schemes in [4, 12] are inappropriate for a conjunctive keyword
search, such as finding “urgent” email form “Bob” about “finance”. Two sim-
ple solutions for the conjunctive search are set intersection and meta keywords.
However, neither solution is appropriate; the former enables the server to learn
which documents match each individual keyword, and the latter requires expo-
nential storage proportional to the number of keyword fields [7]. Thus Golle,
Staddon and Waters proposed secret key encryption with conjunctive field key-
word search and gave two schemes. However, their schemes are not applicable
to a public key system. Thus their schemes can not be used in routing email in
the gateway. And, if Alice wants to search her email in the email server using
schemes in [7], before the searching, she should decrypt her emails using her
private key, encrypt using her secret key again and store the encrypted email;
this seems to be undesired solution and can be a big burden in some case.

Thus, we define the model of public key encryption with conjunctive field
keyword search. And we propose two schemes which are the earliest schemes
for public key encryption with conjunctive field keyword search. The proposed
scheme 1 requires just one pairing operation in Test step, which is the most time
critical in general. Thus, the proposed scheme 1 is suitable for searching on the
stored data. The proposed scheme 2 does not employ admissible encoding scheme,
and is easier than scheme 1 in PECK step. Both schemes are secure in our security
model assuming known intractable assumptions, such as decision bilinear Diffie-
Hellman assumption, decision bilinear Diffie-Hellman inversion assumption, and
strong Diffie-Hellman assumption. Moreover, our schemes are more efficient than
schemes in [7] when ours are used as a secret key system by keeping Apub as a
secret.

This paper is organized as follows: In Section 2, we present some preliminar-
ies. In Section 3, we define security model for the conjunctive keyword search in
public key system. Proposed schemes with the security proofs are presented in
Section 4 and 5. This paper concludes in Section 6.

2 Preliminary

2.1 Bilinear Map

Let G1 and G2 be two groups of order q for some large prime q. Our scheme
makes use of a bilinear map ê : G1 × G1 → G2 between these two groups. The
map satisfies the following properties:
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1. Bilinear: We say that a map ê : G1 × G1 → G2 is bilinear if ê(aU, bV ) =
ê(U, V )ab for all U, V ∈ G1 and all a, b ∈ Z.

2. Non-degenerate: The map does not send all pairs in G1×G1 to the identity
in G2. Observe that since G1, G2 are groups of prime order this implies that
if P is a generator of G1 then ê(P, P ) is a generator of G2.

3. Computable: There is an efficient algorithm to compute ê(U, V ) for any
U, V ∈ G1.

We can make the bilinear map using the Weil pairing or the Tate pairing [1, 5,
6, 8]. In the pairings, the group G1 is a subgroup of the additive group of points
of an elliptic curve. The group G2 is a subgroup of the multiplicative group of
a finite field. Therefore, throughout the paper we view G1 as an additive group
and G2 as a multiplicative group.

2.2 Complexity Assumptions

We review two hardness assumptions, Bilinear Diffie-Hellman (BDH) assumption
and Bilinear Diffie-Hellman Inversion (BDHI) assumption, on which the security
proofs of our proposed schemes are based.

Bilinear Diffie-Hellman Assumption [5, 8]
The BDH problem in G1 is as follows: given a tuple P, αP, βP, γP ∈ G1 as input,
output ê(P, P )αβγ ∈ G2. An algorithm A has advantage ε in solving BDH in G1

if

Pr
[
A(P, αP, βP, γP ) = ê(P, P )αβγ

]
≥ ε

where the probability is over the random choice of α, β, γ ∈ Z∗
p and random bits

used by A. Similarly, we say that an algorithm B that outputs b ∈ {0, 1} has
advantage ε in solving the decision BDH problem in G1 if∣∣Pr

[
B(P, αP, βP, γP, ê(P, P )αβγ) = 0

]
− Pr

[
B(P, αP, βP, γP, R) = 0

]∣∣ ≥ ε

where the probability is over the random choice of α, β, γ ∈ Z
∗
p, the random

choice of R ∈ G∗
2, and the random bits of B.

Definition 1. We say that the (decision) (t, ε)-BDH assumption holds in G1

if no t-time algorithm has advantage at least ε in solving the (decision) BDH
problem in G1.

Bilinear Diffie-Hellman Inversion Assumption [2, 11]
The q-BDHI problem is defined as follows: given the (q+1)-tuple (P, xP, x2P, . . . ,
. . . , xqP ) ∈ (G∗

1)q+1 as input, compute ê(P, P )1/x ∈ G∗
2. An algorithm A has

advantage ε in solving q-BDHI in G1 if

Pr
[
A(P, xP, x2P, . . . , xqP ) = ê(P, P )1/x

]
≥ ε
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where the probability is over the random choice of x ∈ Z∗
p and random bits

used by A. Similarly, we say that an algorithm B that outputs b ∈ {0, 1} has
advantage ε in solving the decision q-BDHI problem in G1 if∣∣∣Pr

[
B(P, xP, . . . , xqP, ê(P, P )1/x) = 0

]
− Pr

[
B(P, xP, . . . , xqP, R) = 0

]∣∣∣ ≥ ε

where the probability is over the random choice of x ∈ Z∗
p, the random choice of

R ∈ G∗
2, and random bits used by B.

Definition 2. We say that the (decision) (t, q, ε)-BDHI assumption holds in G1

if no t-time algorithm has advantage at least ε in solving the (decision) q-BDHI
problem in G1.

A similar assumptions are employed in [3, 11, 14].

3 Conjunctive Field Keyword Search Scheme

3.1 Model

Sender sends the following message:

[EApub
[M ], PECK(Apub, (W1, W2, . . . , Wm))]

where Apub is a receiver’s public key, M is the email body, m is the number
of keyword fields and PECK is an algorithm with properties discussed below.
The PECK values do not reveal any information about the message, but enable
searching for specific keywords.

Here, we employ the same assumptions as in [7]:

1. The same keyword never appears in two different keyword fields in the same
document.

2. Every keyword field is defined for every document.

These requirements can be easily satisfied [7]. If documents were emails, for ex-
ample, we could define four fields, such as “From”, “To”, “Date” and “Subject”.
The first requirement is satisfied by prepending keywords with the name of field
they belong to. The second requirement is by assigning the keyword “{the name
of a field}:NULL” to the field that does not have a valid keyword.

We identify a document with the vector of m keywords. Thus, the i-th docu-
ment Di becomes (Wi,1, Wi,2, . . . , Wi,m). To simplify the description, we ignore
EApub

[M ] that can be encrypted with any secure public key encryption.
To search keywords conjunctively, a format of query is defined as Q =

(I1, I2, . . . , It, Ω1, Ω2, . . . , Ωt), where Ii’s are values, between 1 and m, of po-
sition of a keyword in the keyword fields, Ωi’s are keywords to search and t is
the number of keywords in Q. The corresponding trapdoor becomes TQ that can
test whether a document has keywords in their keyword fields.

We call such a system non-interactive public key encryption with conjunctive
field keyword search (PECKS).
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Definition 3. A non-interactive public key encryption with conjunctive field
keyword search scheme consists of the following polynomial time randomized
algorithms:

1. KeyGen(1k): Takes a security parameter, 1k, and generates a public/private
key pair Apub, Apriv.

2. PECK(Apub, D): For a public key Apub and a document D, produces a con-
junctive searchable encryption of D.

3. Trapdoor(Apriv, Q): Given a private key Apriv and a query Q, produces a
trapdoor TQ.

4. Test(Apub, S, TQ): Given a public key Apub, a conjunctive searchable encryp-
tion S = PECK(Apub, D), and a trapdoor TQ = Trapdoor(Apriv, Q), outputs
‘yes’ if {(WI1 = Ω1), (WI2 = Ω2), . . ., and (WIt = Ωt)} and ‘no’ otherwise.

3.2 Security Definition

The original ICC (indistinguishability of ciphertext from ciphertext) is a security
game defined in [7] for a secret key system. Since any user can make PECK in a
public key system, we remove steps for encryption oracle queries. In this paper,
ICC works as follows:

1. The challenger runs the KeyGen(1k) algorithm to generate Apub and Apriv.
It gives Apub to the attacker.

2. The attacker can adaptively ask the challenger for the trapdoor TQ for any
query Q of his choice.

3. At some point, the attacker A sends the challenger two documents D0, D1.
The only restriction is that none of trapdoors asked previously in step 2 is
distinguishing for D0 and D1. The challenger picks a random b ∈ {0, 1} and
gives the attacker C = PECK(Apub, Db). We refer C as the challenge PECK .

4. The attacker can continue to ask for trapdoor TQ for any query Q of his
choice unless TQ can distinguish D0 for D1.

5. Eventually, the attacker A outputs b′ ∈ {0, 1} and wins the game if b = b′.

In other words, the attacker wins the game if he can correctly guess whether he
was given the PECK for D0 or D1. We define A’s advantage as

AdvA(1k) =
∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .
Definition 4. We say that a PECKS is semantically secure against an adaptive
chosen keyword attack if for any polynomial time attacker A according to the
game ICC we have that AdvA(1k) is a negligible function.

To simplify our proofs, we define a variant of ICC, that is, ILCR (indistin-
guishability of limited ciphertext from random)1:
1 A similar security game ICLR (indistinguishability of ciphertext from limited ran-

dom) is defined in [7]. Our security game seems to be easier to understand and to
apply to security proof than ICLR.
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1. The challenger runs the KeyGen(1k) algorithm to generate Apub and Apriv.
It gives Apub to the attacker.

2. The attacker can adaptively ask the challenger for the trapdoor TQ for any
query Q of his choice.

3. At some point, the attacker A sends the challenger a keyword W and its po-
sition z in [1, m]. The only restriction is that the attacker did not previously
ask for the trapdoor T(z,W ). Then the challenger generates two documents
D0 and D1. D0 is a random document with restriction that z-th word of D0

is W and D1 is a random document in all positions. The challenger should
select the two documents so that the previous trapdoors cannot distinguish
D0 for D1. The challenger picks a random b ∈ {0, 1} and gives the attacker
C = PECK(Apub, Db) with two documents D0 and D1. We refer C as the
challenge PECK .

4. The attacker can continue to ask for trapdoor TQ for any query Q of his
choice unless TQ can distinguish D0 for D1.

5. Finally, the attacker A outputs b′ ∈ {0, 1} and wins the game if b = b′.

Theorem 1. If there exists an adversary A that wins game ICC with advantage
ε, then there exists an adversary B that wins game ILCR with advantage ε/2m2.

Proof. We can prove this theorem by the standard hybrid argument. 	


4 Proposed Scheme 1

4.1 Construction

The proposed scheme 1 requires just one pairing operation in Test step that is
the most time critical step in general. Thus, the proposed scheme 1 is suitable
for both searching on the stored data and routing in the email gateway. Observe
that the scheme using a bilinear map in [4] also requires one pairing for a single
keyword search. We need hash function H : {0, 1}∗ → G1. The proposed scheme
1 works as follows:

– KeyGen(1k): The input security parameter determines the size, p, of the
groups G1 and G2. The algorithm chooses two random numbers s1, s2 ∈ Zp

and a generator P of G1. It outputs Apub = [P, Y1 = s1P, Y2 = s2P ] and
Apriv = [s1, s2].

– PECK(Apub, D): Select a random number r ∈ Zp and obtain hash values.
The PECK(Apub, D) is[

ê(rH(W1), Y1), ê(rH(W2), Y1), . . . , ê(rH(Wm), Y1), rY2, rP
]
.

– Trapdoor(Apriv, Q): Select a random u ∈ Zp and make TQ = [T1,T2,I1,I2, . . . ,
. . . , It] where

T1 =
(

s1

s2 + u
mod p

)(
H(Ω1) + H(Ω2) + . . . + H(Ωt)

)
,

T2 = u,

and I1, I2, . . . , It are positions of the words come from Q.
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– Test(Apub, S, TQ): Let S = [A1, A2, . . . , Am, B, C]. Check the equality,

AI1 ×AI2 × . . .×AIt = ê(T1, B + T2C).

If so, output ‘yes’; if not, output ‘no’.

The equality of Test holds if WIi = Ωi for 1 ≤ i ≤ t. We can check as follows:

AI1 ×AI2 × . . .×AIt

= ê(r(H(WI1 ) + H(WI2) + . . . + H(WIt)), Y1).
= ê(s1(H(Ω1) + H(Ω2) + . . . + H(Ωt)), rP ).
= ê(T1, B + T2C).

4.2 Security Proof

Theorem 2. The proposed scheme 1 is secure according to the game ILCR as-
suming DBDH is intractable.

Proof. Suppose A has advantage ε in attacking the proposed scheme 1 under the
security game ILCR. Suppose A makes at most qT Trapdoor queries. We build
an adversary B that solves the DBDH problem in G1 with probability at least
ε′ = ε/(emqT ), where e is the base of the natural logarithm. The running time
of B is approximately the same as A’s.

On input (P, αP, βP, γP, R) adversary B’s goal is to output 1 if R =
ê(P, P )αβγ and 0 otherwise. Adversary B works by interacting with A in the
ILCR game as follows:

KeyGen. Adversary B selects a random number s ∈ Zp, and gives A the public
key Apub = [P, Y1 = αP, Y2 = sP ]. The corresponding private key Apriv is
[α, s] where the value α is unknown to B.

Hash queries. At any time adversary A can query the random oracle H . To
respond to H queries, B maintains a list of tuples < Wi, hi, ai, ci > called
the H-list. The list is initially empty. When A queries the random oracle H
at a point Wi ∈ {0, 1}∗, Adversary B responds as follows:
1. If the query Wi already appears in the H-list in a tuple < Wi, hi, ai, ci >,

then adversary B responds with H(Wi) = hi.
2. Otherwise, B generates a random coin ci ∈ {0, 1} so that Pr[ci = 0] =

1/qT .
3. B selects a random ai ∈ Zp. If ci = 0, B makes hi ← ai(βP ). Otherwise,
B computes hi ← aiP .

4. B adds the tuple < Wi, hi, ai, ci > to the H-list and responds with
H(Wi) = hi.

Trapdoor queries. When A issues a query for the trapdoor corresponding the
the query Qi = (Ii,1, Ii,2, . . . , Ii,t, Ωi,1, Ωi,2, . . . , Ωi,t), A responds as follows:
1. Adversary B executes the above algorithm for responding H queries to

obtain an hi,j ’s such than H(Ωi,j) = hi,j . Let < Ωi,j , hi,j , ai,j , ci,j > be
the corresponding tuple on the H-list. Unless all ci,j ’s are 1, then B fails.
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2. Otherwise, we know ci,j = 1 and hence hi,j = ai,jP . Define Ei = (ai,1 +
ai,2 + . . . + ai,t)Y1 and Fi = ( 1

s+ui
mod p)Ei where ui is a random

integer in Zp. Observe that Fi = α
s+ui

(H(Ωi,1)+H(Ωi,2)+. . .+H(Ωi,t)).
Therefore Fi is the correct trapdoor for the query Q under the public
key Apub = [P, αP, sP ]. Adversary B gives [Fi, ui, Ii,1, Ii,2, . . . , Ii,t] to
adversary A.

Challenge. Eventually adversary A produces a keyword W and a position z
that it wishes to be challenged on. B generates the challenge PECK as follows:
1. Adversary B executes the above algorithm for responding H queries to

obtain an h such than H(W ) = h. Let < W, h, a, c > be the correspond-
ing tuple on the H-list. If c = 1, then B fails.

2. Adversary B selects random words Wi,j ’s for i ∈ {0, 1} and 1 ≤ j ≤ m
except W0,z that becomes W . And B generates Di = (Wi,1, . . . , Wi,m)
for i ∈ {0, 1}. The restriction is that the previous trapdoors cannot
distinguish D0 for D1. If so, B regenerates D0 and D1. Given W0,j , let
< W0,j , h0,j , a0,j, c0,j > be the corresponding tuple on the H-list.

3. Adversary B responds with the challenge [A1, A2, . . . , Am, B, C] and two
documents D0 and D1. The values of challenge are computed as follows:
– If c0,j = 0, Aj = Ra0,j . Otherwise, Aj = ê(a0,j(γP ), αP ).
– B = s(γP ).
– C = γP .

If R is ê(P, P )αβγ , the challenge is equivalent to[
ê(γH(W0,1), Y1), ê(γH(W0,2), Y1), . . . , ê(γH(W0,m), Y1), γY2, γP

]
.

Thus this is a valid PECK for D0 as required.
More queries. Adversary B responds to these queries as before. The only re-

striction is that no Trapdoor query distinguishes D0 for D1.
Output. Finally, A outputs b′ ∈ {0, 1} indicating whether the challenge is the

encryption of D0 or D1. Adversary concludes its own game by outputting a
guess; if b′ = 0 then B outputs ‘yes’ meaning R = ê(P, P )αβγ . Otherwise, it
outputs ‘no’.

This completes the description of adversary B. Adversary B can fails in re-
sponding Trapdoor queries and preparing the challenge. We define two events:

– E1: B does not abort as result of any A’s Trapdoor queries.
– E2: B does not abort during preparing the challenge for A.

We can assume that qT is sufficiently large, thus (1 − 1/qT )qT = 1/e. Pr[E1] ≥
1/em and Pr[E2] = 1/qT . Thus, B breaks DBDH problem with the advantage
ε′ ≥ ε/(emqT ). 	


Corollary 1. The proposed scheme 1 is semantically secure against an adaptive
chosen keyword attack assuming DBDH is intractable.
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4.3 Efficient Implementation

The proposed scheme 1 requires m pairings in PECK step. We show that the
pairing operations are not a burden, by employing techniques of compressed
pairing [13], preprocessing of fixed point [1], and combining final exponentiations.

Firstly, we review pairing operation very shortly. To simplify description, we
consider the case of embedding degree 2, although our description can cover
all even embedding degrees. A pairing operation consists of two parts: Miller’s
algorithm [10] maps E(Fq)×E(Fq) to Fq2 and a final exponentiation algorithm
maps the field element to an element in G2. Let x + iy ∈ Fq2 is the output of
Miller’s algorithm where x, y ∈ Fq, and i2 = δ for some quadratic non-residue
δ ∈ Fq. The final exponentiation raises the output of the Miller’s algorithm to
the power of (q2 − 1)/p = (q − 1)(q + 1)/p. Then

(x + iy)q−1 = (x + iy)q/(x + iy) = (x− iy)/(x + iy)

which is a simple computation. We define a (modified) pseudo-compressed pair-
ing ε̂(U, V ) as a + bi = (x− iy)/(x + iy). Observe that ê(U, V ) = ε̂(U, V )(q+1)/p.
Given a, we can compute b up to a sign; the value is ±((a2 − 1)1/2)/i. Thus, if
s(a, b) is a single bit determines the sign of b, a||s(a, b) is a sufficient information
to reconstruct a + bi.

Now, the efficient implementation of the proposed scheme 1 is as follows:

– KeyGen(1k): The same as the step in 4.1.
– PECK(Apub, D): Select a random number r ∈ Zp and obtain hash values.

The PECK(Apub, D) is[
a1||s(a1, b1), a2||s(a2, b2), . . . , am||s(am, bm), rY2, rP

]
,

where ai and bi are computed from ε̂(rH(Wi), Y1).
Since all pairings use the same point Y1, Miller’s algorithm can be sped
up by reusing the coefficients of line functions [1]. In addition, the pseudo-
compressed pairing enable us to remove the computational cost of the final
exponentiations and to reduce the size of PECK approximately by half.

– Trapdoor(Apriv, Q): The same as the step in 4.1.
– Test(Apub, S, TQ): Let S = [A1, A2, . . . , Am, B, C]. Recompute ai +bii’s from

Ai’s, and aT + bT i = ε̂(T1, B + T2C). Check the equality,(
(aI1 + bI1 i)× (aI2 + bI2i)× . . .× (aIt + bIti)

(aT + bT i)

)(q+1)/p

= 1.

If so, output ‘yes’; if not, output ‘no’.
Observe that this step requires only one final exponentiation, which is also
required even if the pseudo-compressed pairing is not used. That is, there
is no computational overhead in this step due to the pseudo-compressed
pairing.

Using the above techniques, we can reduce a burden of pairing operations in
PECK step without additional cost in other steps.
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5 Proposed Scheme 2

5.1 Construction

The proposed scheme 1 is efficient, but employs admissible encoding scheme
[5] in the H function. In a future, the admissible encoding scheme can be a big
computational burden, because the encoding scheme requires log2(q/p)-bit scalar
multiplication in E(Fq) where Fq is the field on which G1 is based and p is the
size of group G1, G2. For example, if log2 p is 512 and the embedding degree of
pairing is 6, then log2 q should be at least 2560 and thus log2(q/p) is 2048 [5, 9].
This means that we should compute 2048-bit scalar multiplication to compute
admissible encoding scheme, which is much harder than scalar multiplication in
G1.

The proposed scheme 2 does not employ the admissible encoding scheme.
And, this scheme is easier than scheme 1 in PECK step. We need hash functions
H1 : {0, 1}∗ → {0, 1}log2 p and H2 : {0, 1}∗ → {0, 1}log2 p. The proposed scheme
2 works as follows:

– KeyGen(1k): The input security parameter determines the size, p, of the
group G1 and G2. The algorithm chooses random numbers s1, s2, . . . , sm,
sm+1, sm+2 ∈ Zp and a generator P of G1. It outputs Apub = [P, Y1 =
s1P, . . . , Ym = smP, Ym+1 = sm+1P, Ym+2 = sm+2P, g = ê(P, P )] and
Apriv = [s1, . . . , sm, sm+1, sm+2].

– PECK(Apub, D): Select random r0, r1, . . . , rm ∈ Zp and obtain hash values.
the PECK(Apub, D) is[

r0(Y1 + H1(W1)P ) + r1P, . . . , r0(Ym + H1(Wm)P ) + rmP,

r1Ym+1, . . . , rmYm+1, r0Ym+2, H2(gr0)
]
.

– Trapdoor(Apriv,Q): Select a random u ∈ Zp and make TQ = [T1,T2,T3,I1, . . . ,
. . . , It] where

T1 =
1

sI1 + . . . + sIt + H1(Ω1) + . . . + H1(Ωt) + sm+2u
P,

T2 =
1

sm+1
T1,

T3 = u

and I1, . . . , It are positions of the words come from Q.
– Test(Apub, S, TQ): Let S = [A1, . . . , Am, B1, . . . , Bm, C, D]. Check the equal-

ity,

H2

(
ê(AI1 + . . . + AIt + T3C, T1)

ê(BI1 + . . . + BIt , T2)

)
= D.

If so, output ‘yes’; if not, output ‘no’.
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The equality of Test holds if WIi = Ωi for 1 ≤ i ≤ t. We can check as follows:

H2

(
ê(AI1 + . . . + AIt + T3C, T1)

ê(BI1 + . . . + BIt , T2)

)
= H2

(
ê(AI1 + . . . + AIt + T3C, T1)

ê(rI1P + . . . + rItP, T1)

)
= H2 (ê(r0(YI1 + H1(WI1 )P ) + . . . + r0(YIt + H1(WIt)P ) + T3C, T1)
= H2 (ê(r0P, P ))
= D.

5.2 Security Proof

Theorem 3. The proposed scheme 2 is secure according to the game ILCR as-
suming DBDHI is intractable.

Proof. Suppose A has advantage ε in attacking the proposed scheme 2 under the
security game ILCR. Suppose A makes at most qT Trapdoor queries. We build
an adversary B that solves the (qT + 1)-DBDHI problem in G1 with probability
at least ε′ = ε/(emqT ). The running time of adversary B is approximately the
same as A’s.

On input (P, xP, x2P, . . . , xqT +1P, R) adversary B’s goal is to output 1 if
R = ê(P, P )1/x and 0 otherwise. Adversary B works by interacting with A in
the ILCR game as follows:

KeyGen. Adversary B works as follows:
1. B selects δ1, δ2, . . . , δqT ∈ Z∗

p at random and let f(z) =
∏qT

j=1(z + δj).
2. Expand the terms of f to get f(z) =

∑qT

i=0 ciz
i. Compute U = f(x)P =∑qT

i=0 cix
iP and V = xU =

∑qT +1
i=1 ci−1x

iP .
3. B computes 1

x+δi
U = (f(x)/(x + δi))P =

∑qT −1
j=0 djx

jP for 1 ≤ i ≤ qT ,
and stores the pairs (δi,

1
x+δi

U)’s.
4. B computes

RU = Rc2
0 × ê((c0 +

qT∑
i=0

cix
i)P,

qT −1∑
i=0

ci+1x
iP ).

Observe that if R = ê(P, P )1/x then RU = ê(U, U)1/x.
5. B selects α1, . . . , αm+2, β1, . . . , βm ∈ Zp at random, and computes Yi =

αiV − βiU for 1 ≤ i ≤ m, Ym+1 = αm+1U , and Ym+2 = αm+2V .
At last, B gives A the public key Apub = [U, Y1, . . . , Ym, Ym+1, Ym+2, g =
ê(U, U)]. The corresponding private key Apriv is [s1 = α1x−β1, . . . , sm =
αmx−βm, sm+1 = αm+1, sm+2 = αm+2x] where the value si, . . . , sm and
sm+2 are unknown to B.

H1 queries. To respond to H1 queries, B maintains a list of tuples < Wi,hi,ci >
called the H1-list. The list is initially empty. When A queries the random
oracle H1 at a point Wi ∈ {0, 1}∗, Adversary B responds as follows:
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1. If the query Wi already appears in the H1-list in a tuple < Wi, hi, ci >,
then adversary B responds with H1(Wi) = hi.

2. Otherwise, B generates a random ci ∈ [1, . . . , mqT ] so that Pr[ci ≤ m] =
1/qT .

3. If ci > m, B selects a random hi ∈ {0, 1}log2 p. Otherwise, B makes
hi ← βci .

4. B adds the tuple < Wi,hi,ci > to the H1-list and responds with H1(Wi)=
hi.

H2 queries. To respond to H2 queries, B maintains a list of tuples < gi, γi >
called the H2-list. The list is initially empty. When A queries the random
oracle H2 at a point gi ∈ {0, 1}∗, Adversary B responds as follows:
1. If the query gi already appears in the H2-list in a tuple < gi, γi >, then

adversary B responds with H2(gi) = γi.
2. B selects a random γi ∈ {0, 1}log2 p, and adds the tuple < gi, γi > to the

H2-list. Adversary B responds with H2(gi) = γi.
Trapdoor queries. When A issues a query for the trapdoor corresponding the

the query Qi = (Ii,1, Ii,2, . . . , Ii,t, Ωi,1, Ωi,2, . . . , Ωi,t), A responds as follows:
1. Adversary B executes the above algorithm for responding H1 queries to

obtain an hi,j ’s such than H1(Ωi,j) = hi,j . Let < Ωi,j , hi,j , ci,j > be the
corresponding tuple on the H1-list. If ∀j, ci,j ≤ m, then B fails.

2. Otherwise, B obtains hi,j ’s. Define Ei = sI1 + . . .+ sIt + hi,1 + . . .+ hi,t,
which can be expressed as (αI1 + . . . + αIt)x− (βI1 + . . . + βIt) + (hi,1 +
. . . + hi,t) = Γix + Δi. The Γi and Δi can be computed from the known
values, αIj ’s, βIj ’s and hi,j ’s.

3. B picks i-th pair (δi,
1

x+δi
U) in a storage. Find ui, vi satisfying an equal-

ity of 1/(x + δi) = (vi)/(Γix + Δi + αm+2xui). The ui and vi become
((Δi/δi−Γi)/αm+2) and Δi/δi, respectively. Define Fi = 1/(vi(x+ δi)).
Observe that Fi = 1/(Γix + Δi + αm+2xui) = 1/(sI1 + . . . + sIt + hi,1 +
. . .+hi,t +sm+2ui). Therefore (Fi,

1
sm+1

Fi, ui) is the correct trapdoor for
the query Q. Adversary B gives [Fi,

1
sm+1

Fi, ui, Ii,1, . . . , Ii,t] to adversary
A.

Challenge. Eventually adversary A produces a keyword W and a position z
that it wishes to be challenged on. B generates the challenge PECK as follows:
1. Adversary B executes the above algorithm for responding H1 queries to

obtain an h such than H1(W ) = h. Let < W, h, c > be the corresponding
tuple on the H1-list. If c = z, then B fails.

2. Adversary B selects random words W0,j ’s for 1 ≤ j ≤ z − 1 and z + 1 ≤
j ≤ m so that H1(W0,j) becomes βj by fabricating the H1-list. Note that
W0,z is equivalent to W . B selects random words W1,j ’s for 1 ≤ j ≤ m.
And B generates Di = (Wi,1, . . . , Wi,m) for i ∈ {0, 1}. The restriction
is that the previous trapdoors cannot distinguish D0 for D1. If so, B
regenerates D0 and D1.

3. Adversary B select random ρ, r1, . . . , rm ∈ Zp. Compute Ai = ραiU+riU
and Bi = riYm+1 for 1 ≤ i ≤ m, C = ρam+2U , and D = H2(R

ρ
U ).
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B responds with the challenge [A1, . . . , Am, B1, . . . , Bm, C, D] and two
documents D0 and D1. Observe that r0 is equivalent to ρ/x.

If R is ê(P, P )1/x, the challenge is equivalent to[
(ρ/x)(Y1 + H1(W1)U) + r1U, . . . , (ρ/x)(Ym + H1(Wm)U) + rmU,

r1Ym+1, . . . , rmYm+1, (ρ/x)Ym+2, H2(g(ρ/x))
]
.

Thus this is a valid PECK for D0 as required.
More queries. Adversary B responds to these queries as before. The only re-

striction is that no Trapdoor query distinguishes D0 for D1.
Output. Finally, A outputs b′ ∈ {0, 1} indicating whether the challenge is the

encryption of D0 or D1. Adversary concludes its own game by outputting a
guess; if b′ = 0 then B outputs ‘yes’ meaning R = ê(P, P )1/x. Otherwise, it
outputs ‘no’.

This completes the description of adversary B. Adversary B can fails in re-
sponding Trapdoor queries and preparing the challenge. We define two events:

– E1: B does not abort as result of any A’s Trapdoor queries.
– E2: B does not abort during preparing the challenge for A.

We can assume that qT is sufficiently large, thus (1 − 1/qT )qT = 1/e. Pr[E1] =∏qT

i=1(1 − 1/(qT )ti) ≥
∏qT

i=1(1 − 1/qT ) = 1/e and Pr[E2] = 1/mqT . Thus, B
breaks (qT + 1)-DBDHI problem with the advantage ε′ ≥ ε/(emqT ). 	


Corollary 2. The proposed scheme 2 is semantically secure against an adaptive
chosen keyword attack assuming DBDHI are intractable.

6 Conclusion

We refined the security model of a public key encryption with conjunctive field
keyword search and gave two efficient schemes using a bilinear map. The pro-
posed scheme 1 requires just one pairing operation in Test that is the most time
critical step. Thus, the proposed scheme 1 is suitable for searching on the stored
data. The security of this scheme relies on the intractability of DBDH problem.
The proposed scheme 2 does not employ admissible encoding scheme, and is
easier than scheme 1 in PECK step. The security of this scheme relies on the
intractability of DBDHI problem.
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Abstract. In this paper, we, as well as Eskin, Lee, Stolfo [7] propose
a method of prediction model. In their method, the program was char-
acterized with both the order and the kind of system calls. We focus
on a non-sequential feature of system calls given from a program. We
apply a Bayesian network to predicting the N-th system call from the
sequence of system calls of the length N − 1. In addition, we show that
a correlation between several kinds of system calls can be expressed by
using our method, and can characterize a program behavior.

Keywords: Intrusion detection, Anomaly detection, System call, Bayes-
ian network

1 Introduction

The increase of computers connected to a network with the rapid spread of the
Internet is being enhanced. Therefore, many cases of an unauthorized access to
the computer by the malicious user are reported, and intrusion detection system
which detects such intrusions is getting more and more important.

Many intrusions exploit a vulnerability which is inherent in a program, called
buffer overflow. An attacker rewrites the return address of a function by over-
flowing an internal buffer. Thereby, the attacker can take over the control of the
program and it is possible to execute arbitrary codes [1]. On the other hand,
there are researches of anomaly detection system which detects the intrusion
using buffer overflow by monitoring the control flow of a program [2–11, 14].

An anomaly detection consists of a learning period which learns behavior
during the normal operation of a program, and a monitoring period which su-
pervises the action of a program by comparing with the records of normal op-
erations. Such an anomaly detection system has an advantage of possibility to
detect an novel intrusion compared with the system which only detects a known
intrusion based on the signature. However, the overhead of anomaly detection
which supervises the execution of a program becomes comparatively large. So it
is important to chose the data which characterize the operation of a program.

C.H. Lim and M. Yung (Eds.): WISA 2004, LNCS 3325, pp. 87–98, 2004.
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Forrest et al. [2] showed that it is possible for normal operation of a program
to be characterized by the history of the sequences of system calls which a pro-
gram emits. If an intrusion using buffer overflow happens, since some sequences
of system calls which are not seen during the normal operation will be observed,
it is detectable.

Using the method based on N -gram, we can break a sequence of system calls
into the sub-sequences of fixed length N , and judge whether the operation of a
program is normal or not by comparing with those. In order to make only N -
gram applicable to comparison, it is greatly dependent on N whether incorrect
detection takes place. Forrest et al. refered to the optimal value of N , namely
6. The 6 is experimentally optimal value on the trade-off between detection
capability and efficiency. That is, although efficiency improves when the N is
set as less value, detection capability declines a little. They did not touch on
the reason why the value of 6 was drawn as optimal value, but was treated as
the “magic number” for some years ahead. In order to abolish the necessity of
asking for the optimal value of N from the training data, some researchers made
attempts to generate a finite state machine [6]. And, other researchers also set
N from the normal operation data automatically [7]. Lee et al. [14] did research
which explains the mechanism of N = 6, from a standpoint of information theory
using conditional entropy.

In recent years, the research which clarified the reason was reported by ana-
lyzing the data which Forrest et al. exhibited [12]. Kymie et al. proved that the
condition in which at least one “Minimal foreign length” exists in the sequences
of system calls collected when an intrusion happened is that the value of N is
six or more. Minimal foreign length is the minimum value of N in which at least
one unique sub-sequence exists, when the sequences of system calls are divided
into the sub-sequences of length N [12]. Clearly from their report, in order to
use system call as normal data of an anomaly detection, the features from the
sequences of system calls used for learning need to differ from those observed
from anomalous processes. Although the more than 200 kinds of system calls
exist in the current version of Linux, about dozens of kinds of the system calls
are actually emitted by the program at most. The total number of possible N -
grams is too small to characterize the behavior of program by the system calls
in the case of N = 1. If Σ kinds of system calls are published in the program,
then there are ΣN possible sequences of length N . Therefore, as Σ is large, the
probability under which Minimal foreign length is found increases by leaps and
bounds. Kymie et al. showed the method of calculating the optimal value of N ,
when the stide [2] and Hofmyer et al.’s method [3] were used for an anomaly
detection system. However, when these methods are applied to other data sets,
we do not affirm whether N = 6 may become the “magic number.” When the
optimal value of N is 7 in a certain data set, performing anomaly detection using
the value 6 contains a possibility of overlooking abnormal sequences.

On the other hand, there is a research using the rule learning program, called
RIPPER, which focuses on correlation of system calls [13]. In this paper, Lee et
al. input those sequences which are attached the labels, “normal” or “abnormal”
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and generated some If-then rules, and tried to extract the feature which can
classify the normal and abnormal operations The data which they used in their
experiment was the same as the data of sendmail which Forrest et al. used. And
the procedure of generating the data was described in [2]. The rule set which Lee
et al. generated took form, such as “if p2 = 104 and p7 = 112 then the sequence
is normal” (Here, pi = j means that the i-th system call number in a certain
sequence of system calls is j.) Lee et al. showed that it is possible to detect
anomalous behavior using this rule set. However, in order to generate this rule
set, you have to attach the label of being normal or abnormal to each sequence
of training data. They also aimed to learn the correlation between each system
calls. That is, they predicted the N -th system calls or the middle system calls in
sequences of length N and showed as a result that detection accuracy depends
on the value of N .

Eskin et al. [7] introduced a method of calculating the optimal value of N
from training data [7]. They obtained it by substituting the conditional proba-
bility of transition between each system calls for the formula of the conditional
entropy of Shannon and chosen sequence length with minimal entropy. This value
is the most efficient value calculated information-theoretically. Then, they also
proposed a “prediction model” which expects a N -th system call from the se-
quence of the length N−1 using those conditional probabilities and succeeded in
increasing accuracy of anomaly detection. As shown above, we can calculate the
optimal value of N . But we do not know what propety in the conventional meth-
ods based on N -gram affects detection accuracy. In order to get more efficiency,
we need to clarify such a property.

In this paper, we propose an alternative method of prediction model. We
apply a Bayesian network for predicting the N -th system call from the sequence
of system calls of the length N−1 as well as Eskin et al. We show that a correla-
tion between several kinds of system calls can be expressed by using our method,
and can characterize a program behavior. Then we can decrease the number of
kinds of sequences to use in anomaly detection. The composition of this paper
is as follows. In Section 2, we compare our method with previous result. The
difference between Eskin et al.’s and our method is specifically clarified, and our
contribution is described. In Section 3, we describe the algorithm of our method.
In Section 4, we also present the result of experiment. Then, in Section 5, we
consider a validity of our method. We conclude in Section 6.

2 Non-sequential Model

Eskin et al. [7] proposed the model using sparse Markov transducers based on
sparse prediction tree [7]. In this method, they replaced the overlapping symbol
with the wild card in the sparse Markov tree obtained from a set of sequences
of system calls, and reduced the number of branches. They showed that the
probabilistic threshold outperformed mismatch threshold empirically.

The advantage of using a Bayesian network is that sequence of length N − 1
correlating with a N -th system call can be treated as non-sequential one. For
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stat

mmap

write

stat

write

mmap

open

Fig. 1. The example of sparse Markov tree (The sequence length N is 4).

example, it is assumed that we observe the sequence of length 4 such as {open
mmap stat write} and {open stat mmap write}. By using sparse Markov trans-
ducers, we can obtain the sparse Markov tree, shown as Figure 1.

This tree structure has branched at the portion of open system call. On the
other hand, when a Bayesian network is used for predicting the N -th system
call from the preceding sequence of length N − 1, the (N − i)-th system call
only correlate with N -th. That is, the sequence {open mmap stat write} and
{open stat mmap write} is treated as the same one. When some system calls are
classified according to the kind, we consider correlation between those sets.

3 Our Proposal

This section explains outline and concrete procedure of our proposal.

3.1 Outline of Our Proposal

In a learning period, a Bayesian network is formed from the sequences of sys-
tem calls which an application program emits. A system call is a function for
an application program to use the function which an operating system offers,
and the number corresponding to a name is assigned, respectively. Henceforth,
expression called a system call Si designate the system call whose system call
number is i.

A Bayesian network [18] can express the qualitative dependency between ran-
dom variables with non-circulating directed graph, and is suitable for expressing
a phenomenon including uncertainty, and causal relation. In the background of
the our proposal, there is an idea that causal relation exists between each system
calls in the sequence of system calls from a program. Therefore, the validity of
our method is shown experimentally to the last. The relation between system call
Si and Sj is designated by the directed link Si → Sj in a Bayesian network. Si

is called parent node, and Sj is called child node. The quantitive causal relation
between Si and Sj is expressed with the conditional probability P (Sj |Si). When
there are two or more parent nodes, set of the parent nodes of Sj is designated
by π(Sj). The set of conditional probabilities, provided that all the values of



A Probabilistic Method for Detecting Anomalous Program Behavior 91

parent nodes exists, is called Conditional Probability Table (CPT), and is used
as normal operation data in our method.

In a monitoring period, using the learned bayesian network, the validity of the
sequence of system calls which a program publishes is verified. When a program
publishes a system call Si, conditional probability P (Sj |π(Sj)) is calculated by
using CPT obtained in the learning period. If the intrusion using buffer overflow
occurs, some sequences of system calls which are not seen during the normal
operation will be observed [2, 3]. It is expected from this character that the
value of conditional probability takes a low value during anomaly operation,
and a high value during normal operation continuously.

On the other hand, when sets of the parent nodes π(Si) are equal as for two
or more system calls, it is thought that those conditional probabilities become
small. When judging the height of conditional probability and the validity of
issue, we are anxious about the number of incorrect detections increasing. We
try to solve the problem by using the statistical technique, called Mann-Whitney
U-test [19]. Mann-Whitney U-test is useful in case it tests whether there is a
difference between the median values of two groups.

Hereafter, the concrete procedure in a leaning period and a monitoring period
is explained.

3.2 Formation of a Bayesian Network

In a learning period, the procedure which forms a Bayesian network from se-
quences of system calls is as follows.

1. In the sequences of system calls X = {X1, . . . , Xl, . . . }, when it is assumed
that a causal relation exists between the l-th system call Xl and the set of
system calls {Xl−1, . . . , Xl−D} published for the past D times, it is set to
π(Xl) = {Xl−1, . . . , Xl−D}. The value of D (here, it stand for the degree of
dependence) can be set up arbitrarily.

2. Suppose that the element of π(Xl) be the node of a Bayesian network. Then
all pair of two nodes if there exist a causal relation are connected by directed
links.

3. The procedures (1) and (2) are repeated for all sequences of system calls.
4. P (Xl|π(Xl)) is calculated for all Xl.

Figure 2 is the example which actually complete the above-mentioned pro-
cedure from the sequences of system calls which the ftp program publishs, and
form a Bayesian network. The number in parenthesis in Figure 2 expresses the
system call number. In this case, a set of the parent nodes of a socketcall system
call and a gettimeofday system call is equal. Therefore, as shown above, the
conditional probability of these system calls may take a low value.

3.3 The Procedure of the Anomaly Detection
in a Monitoring Period

The procedure of performing anomaly detection using the learned Bayesian net-
work is as follows.
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Fig. 2. The example of Bayesian network when the degree of dependency D is 3 (The
number in the parenthesis expresses the system call number).

1. In the sequences of system calls X = {X1, . . . , Xi, . . . } a program emits,
when it is assumed that a causal relation exists between the ith system call
Xi and the set of system calls {Xi−1, . . . , Xi−D} published for the past D
times, it is set to π(Xi) = {Xi−1, . . . , Xi−D}. The value of D can be set up
arbitrarily.

2. Ai = P (Xi|π(Xi)) is calculated from the CPT obtained during a learning
period. Moreover, j is selected for Bi = P (Sj |π(Xi)) so as to takes the
highest value.

3. Mann-Whitney U-test [19] is performed with the two groups {Ai, . . . ,
. . . , Ai−I+1} and {Bi, . . . , Bi−I+1}. A null hypothesis presupposes ‘There
is no difference between the median values of the two groups’. A significant
level can be set up arbitrary.

4. When the U statistics calculated in (3) takes the value below a critical value,
it rejects null hypothesis. That is, since there is a difference during the me-
dian values of two groups, the sequence is flagged as anomalous. If the num-
ber of anomalous sequences exceeds a threshold, it is judged that an intrusion
occurs.

Importantly, we calculate P (Xi|π(Xi)) from the CPT, as described below.
First we take the set of conditional probabilies of Xi, given π(X) from which the
hamming distance to π(Xi) take a minimum value in the CPT. Then, we select
the maximum conditional probability as P (Xi|π(Xi)) in the set. Needless to say,
the hamming distance between two sequences affects the detection capability.

4 Experiment

This section describes the result of experiment according to the method which
was stated in Section 3. A specific purpose is to prove that our method is able
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Table 1. Details of data sets.

Program # of seq. # of seq. for training # of seq. for testing # of proc.

ftp 181,663 10,000 171,663 5

xlock 9,230,067 895,924 8,334,143 2

ps 8,589 4,112 4,477 11

login 13,739 6,128 7,611 13

sendmail 143,109 73,491 69,618 34

to detect the intrusion using buffer overflow and to compare the accuracy and
performance of our method with the other method.

4.1 Data Sets

Forrest et al. [2, 3] showed that the short sequences of system calls issued by
a program during its normal executions can characterize it. Those sequences
are also different from the sequences of its anomalous executions as well as the
executions of other programs. The many different methods are compared each
other in the past research [5]. The data sets used in this research are publicly
available at http://www.cs.unm.edu/˜immsec/data-sets.htm. Therefore, we also
experiment using these data sets.

These data consist of “live” data which are recorded by the normal use and
“synthetic” data which are recorded in the environments where the program
options are chosen carefully. Although it was a somewhat rude way, in order to
investigate the number of false positives and false negatives, we chose a suitable
number of sequences of system calls from all these data at random, and used for
training and monitoring. Table 1 describes the details of data sets.

4.2 Comparison

Many researchers have proposed the methods based on N -gram. tide, stide [5],
and Hofmyer’s method [3] are mentioned as an example which are successful
empirically. We decided to use the Hofmyer et al. ’s method [3] as comparison.
Hofmyer et al. calculated the hamming distance between the sub-sequences of
system calls of length N . When this hamming distance exceeds a threshold, that
sequence was judged as abnormal. In their method, the program was charac-
terized with both the order and the kind of system calls. So, we are interested
in whether we obtained the same result or not, even with only non-sequential
sequences of system calls.

4.3 Experimental Results

We measured the accuracy and performance of anomaly detection using our
method. In order to evaluate the anomaly detection system, we can observe
the number of true positives and false positives. True positive rate shows the
percentage of sequences which are flagged as abnormal in the set of sequences
issued by an anomalous process. And false positive rate expresses the percentage
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Fig. 3. ftp (N = 6).

of sequences accidentally judged to be anomalous in the set of sequences of
system calls issued by a normal process. The result which we obtained is shown
in Figure 3, 4, 5, 6, 7.

The experiment using ftp program resulted in the regrettable score shown
in Figure 3. It is easy to check that the rate of true positives is remarkably
small and the further analysis of the sequences of system calls in this program is
required. In other programs, the accuracy of the anomaly detection of Hofmyer
et al. and our proposal are dependent on some parameters. These parameters
involve the threshold C in Hofmyer et al. ’s method which limits the minimal
hammming distance to decide whether a sequence of system calls is anomalous
or not, N which is initial parameter [3], the critical value in our method and so
on. They depend on the context as well as the sequence length N . That is, it
means that the algorithm which finds out optimal values of them from normal
data is required. Needless to say, when we select the appropriate parameter,
we can achieve the results exceeding the Hofmyer et al. ’s method. We selected
the 6 as the sequence length N conventionally used in the past researches. The
ROC curve in Figure 3, 4, 5, 6, 7 is obtained by trying the various parameters
described above. The ROC curve shows that even if only the kind of system call
is extracted as the feature, we can characterize the operation of program.

5 Consideration

In this paper, we showed experimentally that by paying attention to the cor-
relation between several kinds of system calls and the non-sequential feature of



A Probabilistic Method for Detecting Anomalous Program Behavior 95

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004

av
er

ag
e 

tr
ue

 p
os

iti
ve

s

average false positives

our proposal
Hofmeyr et al.

Fig. 4. login (N = 6).
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Fig. 5. ps (N = 6).

those, we can characterize the operation of program. On the other hand, there
are many researches which observe sequential feature of the sequences. The rea-
son for this trend is due to the size of space. When the Σ kinds of system calls
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Fig. 6. sendmail (N = 6).

exist in an environment, the number of possible sequences in order to catch the
feature of program is |Σ|N . But, our method has only N · (|Σ|+N−2)!

(N−1)!·(|Σ|−1)! kinds
of possible sequences. This means that the more varieties of control flows in the
program, the less number of unique sequences of system calls we can discriminate
from all the other sequences. That is, this may drop the accuracy of the anomaly
detection and increase the number of false positives. Fortunately, we can prove
that non-sequential feature is large enough to distinguish between normal and
abnormal operation. But, because the research which shows that it is possible
to avoid an anomaly detection system by camouflaging sequences of system calls
skillfully is also reported [17], it is desirable that we can express many features
of programs to enhance the accuracy, while holding overhead.

On the other hand, there is a research that does not only regard a sequence
of system calls as a feature, but also describes the action of a program in higher
dimensions with other information about it. Wagner et al. performed static anal-
ysis of a source code and created the non-deterministic pushdown automaton
expressing control flow of a program [15]. In recent years, Oyama et al. devel-
oped the method, added inspection of stack information, and created a state
transition diagram leading to no false positives [16]. In these anomaly detection,
since there are many features which should be inspected, more amounts of calcu-
lation are needed, so we are anxious about the overhead. Our ultimate goal is an
anomaly detection system as an intrusion detection system. For that purpose,
it is necessary to consider not only the capability of anomaly detection in real
time but the amount of calculation and usability.
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Fig. 7. xlock (N = 6).

6 Conclusion

In this paper, we proposed a method of anomaly detection based on N -gram.
Since our proposal has put the basis on correlation being between system calls
from the standpoint of information theory as well as Eskin et al. [7]. Moreover, we
apply Bayesian network to concretely describe the correlation between several
kinds of system calls. Thereby, we can clarified the non-sequential correlation
between system calls experimentally. Future work is investigation of the validity
of the proposal system in more programs.
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Abstract. Current IDSs can be easily overwhelmed by the the amount
of information they ought to analyse. By pre-processing the information,
this paper aims both to alleviate the computational overhead involved
in intrusion detection and to make IDSs scalable. Regardless whether it
is a sequence of network packets or a sequence of system calls, the infor-
mation an IDS analyses is often redundant in at least two respects: first,
every entry in the sequence may contain spurious information; second,
any sequence may contain redundant subsequences. By using Rough Sets
we have identified key attributes for every entry eliminating spurious in-
formation, without missing chief details. Using n-gram theory we have
identified the most redundant subsequences within a sequence, and then
substituting them with a fresh tag, resulting in a sequence length reduc-
tion. To make an IDS scalable we have proposed to structure the IDS as
a collection of sensors, each of which is specialised to a particular service,
i.e. telnet, smtp, etc. To approach service selection, we suggest the use
of Hidden Markov Models, trained to detect an specific service described
by a family of n-grams. Our results are encouraging, we have obtained
an average reduction factor of 12. Using the service discriminator we
have also written a simple, yet effective, misuse IDS. The impact over
detection and false alarm ratio using reduced sequences is negligible.

Keywords: Dimensionality Reduction, Object Reduction, Intrusion De-
tection, Misuse Detection

1 Introduction

Intrusion detection is concerned with the timely discovery of any activity that
threatens the integrity, availability or the confidentiality of an IT system. It often
amounts to detecting an known pattern of computer misuse or an deviation to
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expected user behaviour. Regardless of the approach, however, current Intrusion
Detection Systems (IDSs) get easily overwhelmed for the amount of information
they ought to analyse. This paper suggests an pre-processing mechanism that
aims both to make IDSs tractable and scalable.

To make intrusion detection more tractable, we compact the information to
be analysed without losing key information. This input information, whether it
being a sequence of network commands or a sequence of system calls, is often
redundant in at least two respects. First, any entry in either of these sequences,
called object for short, may contain spurious information. And second, any se-
quence may contain a number of irrelevant objects. Using rough sets [1], we have
successfully identified the object attributes that best characterise the object in-
formation without missing chief details [2]. Using n-gram theory [3], we have
successfully identified those subsequences of objects that most frequently occur
within a session and then folded them up with a fresh tag, thus reducing the
session length.

To make it scalable, we suggest to structure intrusion detection as a collection
of sensors, each of which is specialised to a particular service. To approach service
discrimination, we suggest to use a Hidden Markov model (HMM) trained to
pinpoint what n-gram family (characterising a service) the given header of an
input sequence is likely to belong to.

While our mechanism is applicable in most contexts, we have focused on a
sequence of system calls and used, for testing purposes, BSM log files borrowed
from the DARPA repository [4, 5]. Our results are encouraging. In average, we
can shrink an input sequence by a factor of 12. Moreover, using an ftp, smtp and
telnet discriminator, we have written an simple, yet effective intrusion detector.
It consists of the parallel composition of 3 independent IDSs, each of which deals
with an separate service discriminator IDS.

This paper is organised as follows: §2 describes an novel architecture to an
intrusion detection system. §3 and §4 respectively describe our methodology
for object normalisation and session shrinking. Then §5 introduces an HMM-
based service discriminator, with which we separate multiplex input sequences
according to the service each of which belongs to. §6 shows the impact of our
reduction techniques on intrusion detection. §7 contrasts related work and §8
presents suggestions for further work and the conclusions we have drawn from
our experiments.

2 An Architecture for an Intrusion Detection System

In this section we present a novel architecture for an intrusion detection mecha-
nism. The architecture is novel in two respects: i) it incorporates an service dis-
criminator, with which our IDS separates multiplexed input sequences in terms
of the service each of which belongs to. And ii), it incorporates both an misuse
detector (MIDS) and anomaly detector (AIDS) [6], probabilistically combining
their output in order to increase the detection ratio and reduce the false-positive
one. The IDS simultaneously checks the input for a misuse and an anomaly.
Fig. 1 shows the IDS architecture.
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The first element of the architecture is an attribute reducer which filters out
superfluous attributes from a sequence of system calls. The system calls with
the normalised number of attributes is then shrinked by substituting repetitive
sequences (in the form of n-grams) with a fresh tag. Then the service discrimi-
nator uses the first system calls from each session to select the service it belongs
to. Each service the system is monitoring has its own discriminator. Once the
session is categorised and reduced, it is parsed by the MIDS and AIDS mod-
ules. The output of both modules is then used to estimate the probability of an
intrusion.

Now we will briefly describe the role of each IDS component.

N−Gram Session

Folding
Attribute FilterBSM Log File

HMM Service

Selection

N−Gram Session

Folding

N−Gram Session
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Service i

Service m
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HMM Misuse
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Fig. 1. IDS Architecture.

3 Attribute Reduction Using Rough Sets

This section describes the first of two serial methods that are used to shrink
the information to be analysed by the IDS. As mentioned above, we restrict
ourselves to the inspection of sequences of system calls.

A system call consists of an mnemonic and a number of arguments. The
number of arguments varies from one system call to other and there might be a
few dozens of argument types in a typical operating system. Thus, if we were to
use an sequence of system calls as the input to an intrusion detector, then we
will have to consider every possible system call as well as each of its associated
arguments. Since this would make the detection intractable, IDS often consider
only the system call mnemonic, dropping out all of the arguments, hence missing
possible key information. To get around this problem, we suggest to normalise
every system call such that it contains the least number of arguments with



102 Fernando God́ınez, Dieter Hutter, and Raúl Monroy

respect to a given target for information coverage [7]. We approach system call
normalisation using rough sets [1].

Rough sets are used to identify superfluous arguments of a collection of sys-
tem calls. They allow for flexible element classification by using a rough approx-
imation to set membership, c.f. the upper and lower limits that define a rough
boundary. Rough sets estimate the relevance of an element by computing the el-
ement dependencies with respect to a given decision class. It achieves attribute
set covering by imposing a discernibility relation. Rough set’s output, purged
and consistent data, can be used to define decision rules.

3.1 Rough Sets for System Call Normalisation

Normalising the arguments of a system call corresponds to finding an attribute
reduct. So, to achieve system call normalisation, ideally we would just need to
collect together as many as possible sequences of system calls and make our
favourite rough set tool, e.g. Rosetta [8], to process them. However this is not
practical. So we ran a number of separate reduction experiments, each of which
considers an independent sequence of system calls, and then merged together the
associated reducts. Then, we find what we called a minimum common reduct per-
forming an statistical analysis that removed those call arguments that appeared
least frequently.

3.2 Reduct Extraction

In our reduct extraction experiments, we used audit borrowed from the DARPA
repository. In total, we considered 8 logs, randomly chosen from the existing 25,
in 1998. Then the logs were put together into a large, single log which was evenly
divided in segments of 25,000 system calls, yielding 365 segments. For each par-
tial log file, we made Rosetta extract the associated reduct using Johnson’s al-
gorithm, selecting 100% information converage. Then the resulting reducts were
sampled using an frequency-based discriminant, and out of that analysis we con-
structed a minimum common reduct (MCR). This MCR keeps most information
of the original data but minimises the number of attributes. The largest reduct
in the original set has 15 attributes and our minimum common reduct has 18
attributes. This is still a 66.66% reduction in the number of attributes. The 18
chief attributes are shown below:

Access-Mode
Owner
Owner-Group
File-System-ID
inode-ID

device-ID
arg-value-1
arg-string-1
arg-value-2
arg-value-3

exec-arg-1
Socket-Type
Remote-IP
Audit-ID
Effective-User-ID

Effective-Group-ID
Process-ID
System-Call

3.3 Reduct Validation

To validate the performance of the reduct we appeal to so called association
patterns. An association pattern is basically a pattern that, with the help of
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wild-cards, matches part of an input information. Given both a reduct and a
log file, the corresponding association patterns are extracted by overlaying the
reduct over that log file, and reading off the values. Then the association pat-
terns are compared against another log to compute how well they cover that
log file information. Thus, our validation test consists of checking the quality
of the association patterns generated by our output reduct, considering two log
files. The rationale behind it is that the more information about the system the
reduct comprehends the higher the matching ratio the association patterns of
that reduct will have.

The reduct was validated using log files from the 1998 and 1999 DARPA
repositories. The results we got showed that we need less than a third of the 51
original attributes to describe an audit file with minimum loss of information. A
complete account of our experiments can be found in [2].

4 Session Folding Using N-Gram Models

We now turn our attention to the second method used for reducing the infor-
mation to be used for inspection. The method shrinks an input sequence by
substituting repetitive subsequences. We used an n-gram model to identify key
repetitive subsequences that largely reduce an given sequence of system calls.
Our results show that we can reduce an input sequence by an factor of 4, using
an only 19 n-gram model.

4.1 N-Gram Theory

To identify the most repetitive session subsequences, we use n-gram theory [3].
N-gram theory has been largely used in the context of language prediction. It has
also been used in anomaly detection by Maxion [9, 10], Marceau [11], Wespi [12],
and Forrest [13]. Let an n-gram be a sequence of n symbols, system calls in our
case. Then, an n-gram language model is used to calculate the probability that a
system call s will appear at position n, given the occurrence of an (n− 1)-gram;
that is, a sequence of n-1 system calls. So the n-gram language model enables
us to estimate the likelihood of appearance of a given n-gram along a larger
sequence. By using n-gram theory, we identified the n-grams with the highest
rate of occurrence among different services, namely: i) ftp, ii) telnet and iii)
smtp, and the ones general to all services. This section shows a collection of
n-grams that are very likely to be found repetitively in any computer session.

4.2 N-Gram Extraction

N-Gram extraction consists of the application of a blind, exhaustive procedure.
As a result, we obtained the n-grams that occur most frequently in the training
sessions. Although in theory n-gram model creation should consider all possible
n-grams, in practice only n-grams that exist within the training data are used.
For example for a 10-gram with a vocabulary of 200 tokens, the possible number
of sequences should be 20010 × 199. However, in our experiments, we found
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only 2291. N-Gram extraction prunes all sequences with 0 occurrences. For the
final language model a low probability is assigned to pruned sequences. In our
calculations, we considered the n-grams that were pruned from the entire log file
as well as those pruned from different services within that file.

The n-grams were extracted from a set of all concatenated sessions from
the same day (i.e. a daily log file). The sessions were concatenated because we
wanted to extract the n-grams with higher frequency or probability regardless
the session they belong to. Every n-gram used was assigned a priority to decide
the order of substitution.

If an n-gram is present in the training log files an occurrence frequency is
assigned to it, if it is not present then an occurrence probability is assigned.
Using the n-gram count and the language model, we identified the n-grams with
higher occurrence frequency or probability. We considered different n-gram sizes
to find n-grams that provided a high reduction rate.

Using both n-gram occurrence frequency and probability, we estimated a
reduction ratio later used as a priority Pr for every selected n-gram. Not only
does this ratio consider large n-grams with a high frequency, but it also considers
the total number of system calls N on the training sequence sessions from which
the n-grams were extracted. We calculated a reduction percentage for every
selected n-gram, i.e. how much will a given n-gram reduce a log file.

If we use n-gram frequency f the n-gram priority Pr is given by:

Pr =
n× (f + 1)

N
(1)

By contrast if we use n-gram probability P the n-gram priority Pr is given by:

Pr = P × n (2)

In both cases n is the size of the n-gram. Both equations provide a reduction
ratio for the input n-gram. Using this ratio we choose the sequences that provide
a high reduction rate. We will now describe the priority assignment for service
exclusive n-grams.

To avoid overlapping when making an n-gram substitution we used a prior-
ity queue approach to select the n-gram to substitute. The queue was used to
substitute high ratio n-grams. We created a window of size equal to the largest
n-gram in the queue. Every time the window was full, we tested its contents
against all n-grams in the queue. The order of the priority queue is given by
the ratio defined in equations (1) and (2). By substituting n-grams with higher
ratio we warranty that, even if there is overlapping, only the n-grams that pro-
vide maximum reduction are used. Then by substituting an n-gram with a new
symbol we avoided further substitution on that segment resulting in overlapping
elimination. We will now explain how the priority queue was applied to log file
reduction.

4.3 N-Grams for Session Folding

We used three dimensional histograms to analyse the amount of n-grams with
a frequency similar to a multiple of the session number in the training data. If
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there are m sessions and the frequency of an n-gram is a multiple of m, then that
n-gram is more likely to be common among every session. The same histograms
can be used to know in advance how many n-grams to look for when making the
frequency based selection.

Based on this frequency analysis we identify the n-grams with a desired
frequency. This analysis makes the extraction of such n-grams much easier and
faster. From the extraction we chose 100 n-grams for the reduction. These n-
grams are mostly ones with a frequency equal to a multiple of the number of
sessions. Also based on the language model probabilities we selected about 50
n-grams with a probability above 98%.

After extracting n-grams for every log file a language model is generated. One
option that needs explaining is the selection of the discounting strategy. The one
provided with the software we used is the good-Turing estimator. According to
the literature [3] it is a great method to avoid elimination of unseen n-grams
without imposing considerable probability reduction of existing n-grams.

After selecting n-grams with high frequency or high probability we calculated
the reduction ratio. The reduction ratio will sort selected n-grams in a priority
queue for subsequent replacement of such n-grams in the log files. Using the
priority queue we can substitute or fold a given session. Prior to the substitution
we load any abbreviation dictionary that we have previously used in order to
avoid repetitive abbreviations in sub-sequent reductions. Now we will describe
how the validation is done using the resulting set of n-grams.

4.4 Reduction Validation

Extracted n-grams provide an average reduction of 74% within the training
sessions. We also used the n-grams to reduce unseen sessions from 5 different log
files. As input we have an unseen log file and as output we provide the reduced
log file. In table 1 we show the reduction ratio over the validation data. The table
columns are: log file id, original number of system calls, compressed number of
system calls, and number of n-grams used in the reduction. Last row of the table
shows the results of applying the reduction to a file with only telnet sessions.

Table 1. Validation Results.

Log File Original Object # Compressed Object # Reduction % Used N-grams

1 776, 000 270, 000 65.3% 7
2 1, 800, 000 486, 000 73% 12
3 1, 150, 000 344, 000 70.1% 5
4 801, 000 175, 000 78.2% 9
5 1, 158, 000 392, 000 66.2% 5

Telnet 209, 000 48, 000 77.1% 5

Our results show that we can reduce session length, up to a fourth of its
original size with minimal information loss. We will show in the following section
how n-grams can be grouped and used for service discrimination.
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5 Hidden Markov Models for Service Selection

Every service such as telnet, ftp, and smtp has a distinctive session header.
Just as we showed in the previous section, n-grams can be used to identify such
repetitive session headers. However there is a catch; from session to session there
are small variations in session headers. This variations of similar n-grams will be
regarded as different and therefore will not be considered by our folding method.
With the use of hidden Markov Models (HMM) to group similar n-grams, we
group such n-grams as a family.

We will begin the section by pointing out the advantages of having a service
discrimination module.

5.1 Benefits of Service Discrimination for Intrusion Detection

According to Axelsson [14], building a profile for anomaly detection requires a
staggering amount of information. All these information can easily overwhelm
any IDS. To get around this situation either we reduce the information, or we
split the profile in smaller parts, e.g. a user profile divided in services. Both
solutions are not mutually exclusive since reduced information can also be split
up. Since we have already reduced the information, now we reduce the workload
for our IDS by discriminating services. With this selection we advocate the de-
tection to a single service. The main advantages of using a service selection are
shown below:

Flexibility, the configuration for the service we are monitoring can change, i.e.
different port number. Service selection will not be affected since we are
analysing behaviour and not a specific configuration.

Efficiency, the search space is reduced whether we make misuse or anomaly
detection.(e.g. only attacks for the selected service are verified).

Scalability, in order to monitor a new service, we only need to add a discrimi-
nator for that service, and train the misuse and anomaly detection modules
accordingly.

By using the service discriminator, our IDS is flexible, scalable, and efficient,
it uses a reduced search space to look for an intrusion. These characteristics have
been of interest for an IDS since Denning’s paper [15], and have been pointed
out by Forrest et al. [16], Zamboni et al. [17] and Mell et al. [18, 19]. An ideal
IDS has more characteristics but ours complies with the ones mentioned above.
Now we will describe the process to select service selection n-grams.

5.2 N-Gram Selection

The methodology to extract n-grams representing session headers is similar to
the one proposed in §4 only up to the frequency analysis. We want to find the
n-grams that characterise the beginning of every session of the same service.
Services that need authentication might have two different n-grams; one for
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successful, and one for unsuccessful authentication. Such n-grams will allow us
to identify the service a session belongs to.

The analysis is made to the sequence of system calls previous to the call
fork which usually indicates the beginning of user interaction process. Wespi
et al. in [20] consider sequences that begin with a fork and end with exit. By
using our service selection method, when a fork is reached the service is already
selected.

To identify the sequence of system calls prior to the fork call, we begin with
an n-gram frequency analysis. We know every session of the same service has
the same header but only to a certain point. After such point, headers begin to
show small variations. These variations are repetitive among sessions. The same
variation will show on many sessions. That is why we only keep the n-grams
with a frequency equal to the number of sessions of a given service. We repeat
the frequency analysis incrementing the size of the n-grams until no n-gram has
a frequency equal to the number of sessions. Up to this point we have a large
n-gram header that will repeat among every session. Posterior n-grams are not
guaranteed to be equal for every session. Now we will show how to collect these
different n-grams and treat them as one.

5.3 Service Specific Hidden Markov Models

Detecting the biggest n-gram common to all headers is only the first step. After
its detection, we need to identify how sessions continue the service initialisation
process. We also need to know how many different system calls exist between
different headers, the length of the largest header, and the end of the header.

By extracting the largest header n-gram and the closest n-gram to the first
fork we can identify the entire header. After an identification of the headers for
every session, we proceed to isolate them.

After isolation, we concatenate every header corresponding to the same ser-
vice. This concatenation will create a file containing headers for a given service.
We call these concatenations n-gram families. To be able to identify the mem-
bers of these families we used a probabilistic sequence identifier. The identifier
is known as a hidden Markov model (HMM) and is described in detail in the
book of Manning and Shütze [3]. The theory behind HMMs is well known and
will not be discussed in this paper.

One way to train an HMM with multiple sequences is to concatenate them,
just as we did by grouping the n-gram families. HMM training is a demanding
process. In figures 2 and 3 we show training times in seconds for sessions of
different sizes. In each figure a regular session and its folded counterpart are
contrasted. The times needed to train an HMM are exponential depending on
the number of states defined for the HMM. The bigger the number of states
the better the classification, in practice the increment in performance stops at a
certain number of states. There is no theoretical way to determine the number of
states in advance, however empirically we found that for header n-gram families
30 states are enough to make a proper discrimination, i.e. to be able to distinguish
between two different services.
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Fig. 2. Telnet Service HMM Training Times.

Fig. 3. Smtp Service HMM Training Times.

The times shown in figures 2 and 3 were calculated in a Pentium IV @ 2.6
GHz, 1GB of RAM, and running Mandrake c© Linux 9.0.

5.4 Service Selection Validation

We generated HMMs for each of these services: telnet, smtp, ftp, finger. In
the case of telnet and ftp we separated each of them in two HMMs; one for
successful login and one for unsuccessful. We then tested the generated HMMs
against headers from the same service and from other services. The results are
summarised in table 2.

The first column in table 2 represents the HMMs for each service. The per-
centage is the number of correctly classified headers for the diagonal (same ser-
vice discriminator and session). For an HMM of a service different from the
testing session services (non diagonal elements), the percentage represents in-
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Table 2. % of Correct Service Discrimination.

HMMs telnet headers smtp headers ftp headers finger headers

telnet 100% 2% 2% 0%

smtp 1% 100% 2% 100%

ftp 0% 1% 100% 0%

finger 0% 0% 0% 100%

correct classifications or false positives. The classification is a high probability
if the header belongs to the HMM or low probability if it does not belong. Is
worth mentioning that we monitor sessions generated at host level. When an
smtp, ftp, or finger session is started for example from within a telnet ses-
sion, those sessions are considered part of the telnet session. We only monitor
services in the same machine the IDS is in. A session where the service is located
in another host is monitored in that host and not locally.

6 Intrusion Detection Using Reduced Audit Files

In order to make a sound analysis of our misuse IDS we need to define our
scenario. In this section we will first explain the attacks used to test our IDS.
Then we will describe results obtained using HMMs with and without reduced
audit files.

All the attacks used in our experimentation are present in the 1998 and 1999
DARPA repositories. These attacks are publicly available as security advisories.
All of the attacks are described in detail in Kendall’s thesis [21]. The attacks
we used for our experiments are 9: i) eject, buffer overflow (U2R), ii) ffb, buffer
overflow (U2R), iii) load-module, shell as root (U2R), iv) format, buffer overflow
(U2R), v) ftp-write, R2L, vi) dictionary, R2L, vii) warez-client, unauthorised
software, viii) satan, probe, and ix) ip-sweep, probe. Attacks labelled as U2R
mean user to root attacks: this means the attacker is able to gain root privileges.
Attacks labelled as R2L means remote to local attacks: the attacker can obtain
some user privileges.

We used 20 instances of each attack to train the HMMs. The tests were
conducted against entire sessions of different services, both reduced and non-
reduced sessions were used. We tested against 800 telnet, 1000 smtp, 50 ftp
and 150 finger sessions. All the sessions were randomly picked from the 1998
and 1999 DARPA repositories.

The results of the attack tests show that even though the detection ratio is
about 97%, the false alarm ratio is also high. From every 200 attacks detected,
approximately 21 were false positives. This false positive rate is very high. If we
reduce the detection threshold, false positive ratio also lowers. Initially we used
a 90% similarity measure, i.e., to be labelled as an attack, the tested sequence
should be 90% similar to the training sequence. When increased to 95%, false
positives were reduced from 21 to 13 out of 200 detections. Detection ratio was
also lowered to 92%.
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By using reduced sessions we obtained a 98% detection ratio and the false
positives were 23 out of 200 detected attacks. With a higher similarity measure,
95%, false positives lowered from 23 to 14 and the detection ratio also lowered
but only to 94%. We tested the same attacks for both scenarios. The difference
in false positives was found in short attacks as eject. Most of the false positives
were normal sessions labelled as one of these short attacks. Nevertheless, higher
detection ratio is present in variations of these same short attacks. In the next
section we will contrast existing audit reduction methods with ours.

7 Related Work

Lane and Brodley have also addressed the problem of object reduction [22, 23].
They have proposed two main clustering methods, one based on K-centres and
the other on greedy clustering. Upon application, each cluster contains a col-
lection of objects sequences, which is then collapsed into only two objects: the
cluster centre and the associated mean. The other object sequences are sim-
ply disregarded. Lane and Brodley’s methods may yield a huge reduction ratio
(e.g. 500 different sequences might be shrunk to only 30 ones or even less); how-
ever, eager sequence elimination inevitably leads to poor or incomplete profiles
and therefore to an increase in the false-alarm detection rate.

Apart from the two methods mentioned above, Lane and Brodley have also
explored two heuristic pruning techniques: least recently used (LRU) and least
frequently used (LFU). In both techniques the reduction ratio is defined a priori
and hence a predetermined number of sequences ought to be eliminated from the
input session. Both techniques will of course produce a reduction ratio as high
as indicated, but at the expense of loss of chief information. Lane and Brodley
report on an increment in the false-positive and false-negative ratio (> 20% and
> 16% respectively)1. By comparison, even though our technique yields a lower
reduction ratio, it does not lose any information and therefore there should be
no increment in the false/positive-alarm ratio.

Wespi et al. propose an IDS along with a reduction method [20]. The re-
duction technique they use makes the same assumption as ours. Sequences of a
certain size have a high rate of repetition. They also analyse header sequences as
the ftp login where small variations occur from session to session. They reduce
the sequences by eliminating repetitive actions and instead of replacing frequent
sequences like we do they aggregate consecutive audit events. They claim that
replacing a repetitive sequence with a new virtual event enriches the vocabulary
but in our experimental experience we saw that the added vocabulary is minimal
in contrast with the reduction rate.

Statistical methods as Hidden Markov Models (HMMs), have been success-
fully used for intrusion detection [24–26]. But as reported in these papers, HMMs
take a large amount of time for training. Experimentally our results can help
improve the times reported in the results by Forrest et al. and Ciao et al. Wagner
also has a paper describing the disadvantages of using only short sequences as
1 Notice these figures represent an increment, not the actual percentage of false-alarms.
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the detection base using HMMs [27]. The size of the sequences can be greatly
increased by the use of our methodology. We will now present some conclusions
and future work.

8 Conclusions and Future Work

We have been able to show how two techniques, rough sets for attribute reduction
and n-gram models for session folding, can be used to reduce the size of the audit
files. Both reduction processes yield a information loss that is negligible. The
attribute reduction method provides a 64% reduction of the original attributes.
The session folding method provides a 74% reduction in session length. We also
showed that the impact of the reduction on intrusion detection is negligible, with
a small overhead in false positives but with an improvement on the detection
rate.

By using the service discrimination module, we can scale IDSs by adding any
number of services. There is added flexibility because a service only needs to
keep the same header behaviour in order to be selected. The detection module
also benefits from the service discrimination by reducing the search space for
both misuse and anomaly detection.

As future work we need to test the actual benefit of reducing the search space
for anomaly detection. Test of the system running without discrimination and
with discrimination. Also new HMMs for services like ssh, sftp, and rpc should
be added to the IDS. All the results from this research can be downloaded from
our website at http://webdia.cem.itesm.mx/ac/raulm/ids/.
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Abstract. Intrusion detection is one of the important aspects in computer secu-
rity. Many commercial intrusion detection systems (IDSs) are available and are 
widely used by organizations. However, most of them suffer from the problem of 
high false alarm rate, which added heavy workload to security officers who are 
responsible for handling the alarms. In this paper, we propose a new method to 
reduce the number of false alarms. We model the normal alarm patterns of IDSs 
and detect anomaly from incoming alarm streams using k-nearest-neighbor 
classifier. Preliminary experiments show that our approach successfully reduces 
up to 93% of false alarms generated by a famous IDS. 

1  Introduction 

Information security has been one of the major issues concerned by computer profes-
sions in recent years. While human daily life is more and more dependent on com-
puters, the number of cyber crimes, as well as the impact caused by the cyber crimes, is 
growing in incredible rates. According to the statistics collected by the CERT Coor-
dination Center (CERT/CC) in the United States, the number of reported incidents 
related to computer security in a year raised from 1,334 to 137,529 over the last decade 
[1]. This is the result of the rapid growth of information technology applications and it 
shows the importance to protect our information assets from attacks and damages. 

In response to the security threats, many technologies have been developed to guard 
valuable information assets against unauthorized disclosures, illegal modifications and 
unpredicted service interruptions. Besides common protection mechanisms (e.g. 
cryptography, firewalls and authentication) that prevent attacks from happening, in-
trusion detection systems (IDSs) are invented to uncover attacks and to alert adminis-
trators for countermeasures. Intrusion detection is one of the essential elements in 
computer security because prompt reactions to intrusive activities can greatly reduce 
harm to the systems and loss due to the attacks. 

1.1  Intrusion Detection 

Intrusion detection is the process of monitoring computer systems or networks and 
searching for signs of attacks [2]. An intrusion detection system consists of sensor(s) 
that listen to the activities within a computer system or network and generates alarms to 
administrators if it finds that suspicious activities (may or may not be an intrusion) 
occur. Over the years, computer scientists have developed numerous techniques to 
detect intrusions. IDSs are also widely used as second-line defense of computer sys-
tems, as supplement to front-line defense mechanisms (e.g. authentication and fire-
walls). 
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Techniques of detecting intrusions fall into two categories, signature-based detec-
tion and anomaly-based detection. The former depends on some known attack patterns 
(signatures). Signature-based IDSs examine audit data (including, but not limited to, 
network traffic, system call logs, resources utilization, and users’ activity logs) and 
compares it with the signatures. If there is a match, an alarm is generated to warn 
security officers for further investigation. Most commercial IDSs depend on signa-
ture-based detection.  

Anomaly-based detection attempts to find suspicious activities occur in the target 
systems. It is based on the assumption that attack scenarios are rare and in some ways 
attacking activities possess different characteristics from normal behaviors. To find out 
abnormal events, normal profiles of protected systems are modeled first and are learned 
by the IDSs. Incoming audit data are then classified to see if it conforms to the normal 
model. If not, there may be attacks and alarms are raised.  

Some research works have suggested combination uses of the signature-based and 
anomaly-based techniques [4]. The hybrid systems take advantages from both detection 
schemes to achieve faster speed and ability to uncover new attacks. 

1.2  Problems of Intrusion Detection Systems 

Although IDSs have been used for years and have demonstrated their values to or-
ganizations’ security, most of them suffer from the problem of high false alarm rate and 
of having difficulties in fine-tuning. Practitioners often complaint that commercial 
off-the-shelf (COTS) IDSs trigger tons of alarms, but most alarms are actually false. 
The number of undesirable false alarms generated by commercial IDSs in a site can be 
as high as thousands per day! Identifying real alarms from huge volume of alarms is a 
frustrating task for security staff. Even worse, when security officers receive huge 
amount of false alarms everyday and treat them as a norm, they may oversee the im-
portance of incoming alerts when real attacks occur [3]. Therefore, reducing false 
alarms is a critical issue in enhancing efficiency and usability of IDSs. 

IDSs can be fine-tuned to suppress false alarm generation. However, it is not that 
easy because improper configuration may degrade security. A signature-based IDS 
depends on a set of rules to separate intrusive behaviors from streams of audit data. For 
example, a telnet connection to a UNIX machine with root privileges may be danger-
ous, so IDSs will trigger alarms when they see such kind of connection. It is obvious 
that the tighter the rule set, the stronger the security can be achieved. However, a tight 
rule set always induces more alarms, while many of them are actually not intrusive. 
Relaxing some rules can reduce the number of false alarms, but this action is risky, 
causing the IDSs unable to detect certain noteworthy incidents. The tuning problem is 
actually to search for a balance of reducing false alarm rate and maintaining system 
security. 

1.3  An Overview of Our Approach 

This paper reports our research that tries to reduce the number of false alarms without 
sacrificing security. The objectives are to reduce false alarm rate and to maintain the 
level of security achieved. Our approach is to let the false alarms being issued as they 
are and then detect any abnormal patterns from them using data mining techniques. We 
believe that when an attack is taking place, the alarms generated by the IDSs will have 
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different patterns from that in an attack-free environment. Detecting these abnormal 
patterns can find out suspicious incidents from tones of false alarms. Those alarms 
which are classified as normal can be ignored. In this sense the security officers’ 
headache, high false alarm rate and hard configuration of IDSs, can be released. 

It is worth noting that our work is to reduce the number of false alarms, hence the 
usability of IDSs is improved. We do maintain the security level offered by intrusion 
detection algorithms, but we are not going to enhance it. More specifically, alerted 
attacks detected by the IDSs should not be filtered out by the false alarm reduction 
process; however, attacks that the IDSs missed will remain undetected. Enhancing 
detection ability of IDSs is beyond the scope of this paper. 

The remaining parts of this paper will review research works on alarms handling for 
IDSs; propose an approach to filter false alarms; and describe experiments to evaluate 
our idea with results. 

2  IDS Alarm Handling Using Data Mining 

Mining IDS false alarms is not a new research area. Manganaris et al. analyzed alarm 
streams to find association rules [5]. He suggested an alarm handling framework that 
filters false alarms for IBM’s network operations center, which provides real-time 
intrusion detection services to customers. His approach is to characterize IDS normal 
behavior in terms of frequent alarm sets with minimum occurrence in bursts of alarms. 
Then incoming alarms were classified to look for non-frequent alarm sets which are 
considered to be suspicious.  

Julisch, also from IBM, proposed to find alarm clusters and generalized forms of 
false alarms to identify root causes [6]. He observed that 90% of false alarms are 
correspondent to a small number of root causes. Knowing the root causes, human 
expertise can adjust the IDSs regularly or remove the root causes to reduce the number 
of false alarms by 82% as shown in Julisch’s experiments. He also mined IDS alarms 
for episode rules [7], which try to predict the set of alarms follows when a specific set 
of alarms occurs. He believed that the rules are useful because with the knowledge of 
such alarm patterns representing legitimate uses of the protected systems, highly 
similar alarms (which are supposed to be legitimate, too) can be filtered easily in the 
future. However, in his report, the episode rules offered only 1% of alarm reduction rate 
and 99% of alarms were left for manual processing. 

Data mining technologies have shown their capabilities to reduce more than a half of 
false alarms. Our approach described in this paper further reduces the false alarm rate 
using KNN classifier. 

3  Suggested False Alarm Filtering Using KNN Classifier 

In this section, we suggest a filtering method for IDS alarms that significantly reduce 
false alarm load. We believe that when a network is under attack, the IDS will issue 
alarms in a way that is more or less different from usual situation. For example, the IDS 
may trigger an alarm of the type that is absent in normal situation or issue more alarms 
of certain types, depending on the attacks it is experiencing. Our method is to determine 
whether the incoming alarm sequences are deviated from normal situations. If that is 
the case, it may be a sign of attacks and further investigation is needed. On the other 
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(1) 

where pi and qi are the values of the ith attribute of points P and Q respectively. The final 
similarity score of a data point being classified is the average of its Euclidean distances 
from the closest k normal points. If the similarity score is higher than a threshold T, the 
point is said to be abnormal and the alarms corresponding to it are noteworthy (case 1 as 
mentioned above). On the other hand, alarms corresponding to low-score data points 
are false and are filtered. 

 

Fig. 2. Relationship between IDS and the proposed alarm reduction processes 

Our suggested modeling and filtering processes are independent from the intrusion 
detection process (Figure 2). Therefore we believe that our model can be applied to 
most commercial IDSs in use nowadays without changing the existing detection con-
figuration. The alarm modeling process makes use of normal alarms, i.e. alarms raised 
by IDSs under no attacks, to construct false alarm models as described earlier in this 
section. The normal models are used by the alarm filtering procedure in which con-
tinuously incoming alarms are filtered. Only the alarms left out needed to be investi-
gated. The entire reduction procedure can be seen as a plug-in to IDSs. 

4  Experiments 

To evaluate the applicability of our approach, we conducted preliminary experiments 
with DARPA 1999 dataset. The DARPA Intrusion Detection Evaluation [9] program 
evaluated intrusion detection technologies with sufficiently large sample dataset which 
contains network traffic embedded with marked attacks. What we used in our experi-
ments are TCPDUMP data collected from an Air Force Local Area Network in 1999. It 
was actually the captured traffic over the network. There are three weeks (5 days a 
week) of training data, with crafted attacks in week 2 only and no attack in week 1 and 
week 3. 

4.1  False Alarms from Snort 

We examined the network traffic with an open-source signature-based IDS, namely 
Snort [10]. Snort is a well-known network intrusion detection freeware available on the 
Internet. It looks for signs of attacks from the network traffic by comparing its own set 
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of attack signatures and incoming packets, and generates an alarm when it finds a 
match. The Snort recorded each incident to database with the exact timestamp, alarm 
type, packet header and other relevant information.  

Table 1. Top 10 frequent alarm types 

Alarm Type Occurrence 
SNMP public access udp 54498 
ICMP PING NMAP 7000 
FTP CWD 5426 
TELNET access 1799 
SCAN FIN 1027 
ATTACK-RESPONSES 403 Forbidden 726 
TELNET login incorrect 554 
WEB-MISC /doc/ access 551 
WEB-CGI redirect access 542 
WEB-MISC apache DOS attempt 480 

We observed that the Snort, with default configuration, had issued more than 75000 
alarms when processing the 3 week data, with more than 5000 per day on average. 
There were 76 different alarm types. For the attacks in week 2, Snort was able to detect 
18 out of 43 attacks. From intrusion detection’s points of view, it is not satisfactory. It 
may be improved with correct configurations, but improving detection ability is beyond 
the scope of this study. Among the alarms, we observed that 4 alarm types contributed 
for more than 68000 (91%) alarms. This observation matches with Julisch’s one [6] as 
mentioned in Section 2. The 10 most frequent alarms types are listed in Table 1. 

4.2  False Alarm Model 

Since the DARPA 1999 dataset contains no intrusive traffic in week 1 and week 3, 
alarms triggered from dataset of these two weeks are false alarms. There are totally 
60549 false alarms in these two weeks. The modeling of false alarm patterns is de-
scribed in the previous section. A data point represents the alarm distribution of dif-
ferent alarm types in a time period. Since there are 76 different types of alarms, there 
are 76 attributes for each data point. Each attribute value equals to the count of the 
corresponding alarm type within the time period. The length of the time window was 
determined arbitrarily. Obviously, a shorter time window would tell administrators 
more precisely the time when a noteworthy data point got identified. Here we set the 
time window size to be 2 minutes. The order of magnitude of different alarm types may 
be different in nature and it will affect the accuracy of the classifier, so the attribute 
values of the points are normalized to eliminate this effect. 

Another parameter to determine is the sampling rate, i.e. how frequent we construct 
data points with the 2-minute window size. The time interval of sampling between two 
successive data points should be shorter than the size of time window that a single data 
point represents. Otherwise, there will be gaps between data points and some alarms 
will be missed in the model. So we set the time interval to be 1 minute.  

The data points of week 1 and week 3 alarms represent how the IDS behaves under 
attack-free situation and we call them normal points. If a new data point lies far apart 
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from these normal points, we consider it as abnormal and further investigations of 
alarms accountable for the point are needed. Classifying data points is done by the 
KNN classifier. 

4.3  Testing the KNN Classifier 

To verify our proposed method of false alarm filtering, a simple KNN classifier was 
implemented using Euclidean distance as the measurement of similarity between two 
data points. We conducted some preliminary experiments with different parameters to 
find an optimal setting. The two parameter values to be tested are the k value and the 
threshold T.  

The value k means the number of closest normal data points taken in account when 
classifying a new data point. This value has an important effect on the performance of 
the KNN classifier and is determined empirically. We tested for different k values, from 
5 to 20. For each value of k, we worked out the alarm reduction rates with different 
threshold T. The larger the value of k, the longer the average distance between the 
classifying point and the normal points. It is because more points are included. Thus the 
different threshold value should be tested for each value of k. 

The second parameter T plays an important role when judging whether a data point 
is abnormal. When classifying a new data point, the Euclidean distances of the point 
with normal points are calculated. The average of k shortest distances is taken as the 
similarity score of the new point. If the score is larger than T, the new point is classified 
as abnormal. Obviously, a high threshold would produce less abnormal points, but 
security would be looser and some noteworthy alarms may be missed. On the other 
hand, lower threshold would offer tighter security but remain to have more false 
alarms. Since we believe that alarm reduction is desirable only if security level is 
maintained, we do not accept a too high T value which leads to filtering of true alerts. 

The experimental results are presented in Figure 3. The results are encouraging. We 
found that our approach is able to reduce up to 93% of alarms without filtering out any 
true alarms detected by Snort. The reduction rates go up as the threshold T increases 
because more data points are classified as normal and the alarms corresponding to these 
points are filtered. For k=10, about 80% of the false alarms in week 2 are filtered when 
T=0.35. The rate reaches 93.8% when the threshold equals to 0.7. We did not further 
increase the threshold because it began to miss out some true alarms.  

 

Fig. 3. False alarms filtered using KNN classifier with varying k 
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5  Conclusion and Future Work 

In this paper, we have proposed a method to reduce the number of IDS false alarms. We 
modeled the normal alarm patterns with an N-dimensional space where each dimension 
corresponds to one alarm type. Each data point in the model represents alarm distribu-
tion for a time period while each of its attribute value is the number of alarms of spe-
cific type in that time period. In our study, KNN classifier is used to classify new data 
points into normal or abnormal based on the Euclidean distances. 

To prove our idea, we carried out preliminary experiments with different k and T 
value combinations. The results show that over 93% of alarms were filtered without 
ignoring true attacks. It means that security officers can spend much less effort in 
handling IDS alarms. 

We plan to further develop our model and apply it on live data to prove that our idea 
is applicable to existing commercial IDSs under real life environments. We will also 
focus on improving our approach to adapt to the changes in the environment. 
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Abstract. This paper addresses the problem of content-based synchronization 
for robust watermarking. Synchronization is a process of extracting the location 
to embed and detect the signature, copyright information, so that it is crucial for 
the robustness of the watermarking system. In this paper, we will review repre-
sentative content-based approaches and propose a new synchronization method 
based on the scale invariant feature transform. In content-based synchronization 
approaches, it is important to extract robust features even with image distortions 
and we suspect that the consideration of local image characteristics will be 
helpful. The scale invariant feature transform regards these characteristics and 
is invariant to noise, spatial filtering, geometric distortions, and illumination 
changes of the image. Through experiments, we will compare the proposed 
method with representative content-based approaches and show the appropri-
ateness for robust watermarking. 

1   Introduction 

The rapid growth of network and computing technology has opened the ubiquitous 
era and digital multimedia has been widely used and accessed everywhere. However, 
digital multimedia can be illegally copied, manipulated, and reproduced without any 
protection. Digital watermarking is an efficient technique to prove the ownership by 
inserting copyright information into the contents itself.  

Since Cox et al. [1] proposed a novel watermarking strategy using spread-spectrum 
technique, there have been many researches inspired by methods of image coding and 
compression. These works are robust to image noise and spatial filtering, but show 
severe problems to geometric distortions.  

In order to counter geometric distortions, synchronization, a process of identifying 
the location in contents for watermark embedding and detection, is required. These 
techniques can be classified into four categories: (1) the use of periodical sequence, 
(2) the use of templates, (3) the use of invariant transforms, and (4) the use of media 
contents. 

Kutter [2] proposed a robust synchronization approach using periodical sequence. 
The signature is embedded multiple times in the image at different spatial locations. 
The peak pattern corresponding to the location of the embedded signature is acquired 
by the auto-correlation function and used to restore geometric distortions by which 
watermarked images have undergone. Pereira and Pun [3] described a template-based 
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approach that inserted templates into media contents. Accurate and efficient recovery 
of geometric transformations is possible by detecting these templates and estimating 
distortions. Lin and Cox [4] introduced an approach that exploited invariant properties 
of the Fourier transform to cyclic translation using a log-polar mapping, called as the 
Fourier-Mellin transform. This transform is mathematically well defined and invariant 
to rotation, scaling, and translation of the image. However, the severe fidelity loss 
during the inversion of a log-polar mapping makes it difficult to implement practi-
cally this approach. The last category is based on media contents and our approach 
belongs to this category. Details of content-based approaches will be explained in 
section 2.  

In this paper, we will review previous content-based synchronization approaches 
and propose a new content-based synchronization method based on the scale invariant 
feature transform. In content-based synchronization approaches, feature extraction, or 
analysis, is important for the robustness of the watermarking system and we suspect 
that the consideration of local image characteristics will be helpful to extract features 
robustly even with image distortions. The scale invariant feature transform may be 
one of the solutions based on local image characteristics and is invariant to rotation, 
scaling, translation, and illumination changes of the image. Therefore, we adopt and 
modify this transform for the watermarking purpose. In experiments, we will compare 
the performance of the proposed method with that of other content-based approaches 
by applying various attacks such as lossy compression, spatial filtering, and geometric 
distortions. The results show the appropriateness of the proposed method for robust 
watermarking. 

In the following section, we will describe previous content-based synchronization 
approaches. Section 3 will propose a new synchronization method based on the scale 
invariant feature transform. Experiment results and discussions are shown in section 4 
and we will make a conclusion. 

2   Previous Content-Based Synchronization Approaches 

In content-based synchronization approaches, media contents represent an invariant 
reference for geometric transformations so that referring contents can solve the prob-
lem of synchronization, i.e. the location of the signature is not related to image coor-
dinates, but image semantics. If we fail to detect the exact location where the signa-
ture is embedded, it is impossible or severely difficult to retrieve the signature 
correctly and the performance of the watermarking system will be decreased after all. 
Therefore, extracting the location, called as the patch, for watermark embedding and 
detection is very important and carefully designed. In this section, we will review 
representative content-based synchronization approaches to calculate the patch. 

2.1   Bas et al.’s Approach 

Bas et al. [5] proposed a feature-based synchronization approach based on salient 
feature points and their Delaunay tessellation. In order to formulate patches for wa-
termark embedding and detection, they first extract feature points by applying the 
Harris corner detector that uses the differential features of the image. The set of ex-
tracted feature points are decomposed into a set of disjoint triangles through Delaunay 
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tessellation. If the set of extracted feature points in the original image and distorted 
images is identical, Delaunay tessellation will be an efficient method to divide the 
image and invariant to spatial filtering and geometric distortions of the image. They 
use each triangle as the patch and embed the signature into the patch by applying a 
classical additive watermarking method on the spatial domain. 

Drawbacks of this method are that the Harris corner detector is sensitive to image 
modifications, i.e. the set of extracted feature points is different even with small im-
age modification and Delaunay tessellation of these points is also severely different 
from that of the original image. Therefore, it is difficult to robustly extract the trian-
gle, the patch, and the robustness of the watermarking system will be eventually de-
creased. Furthermore, geometric manipulations that modify the relative position of 
feature points or remove feature points, for example aspect ratio changes and crop-
ping of the image, may result in different tessellation and the patch do not more corre-
spond. Fig. 1 shows the results of different tessellation in image modifications. 

 

Fig. 1. Feature points and their Delaunay tessellation: (a) the original image, (b) the gaussian 
blurred image, and (c) the cropped image 

2.2   Nikolaidis and Pitas’ Approach 

Nikolaidis and Pitas [6] described an image segmentation-based synchronization 
approach. In general, image segmentation is a useful tool in image processing and 
segmented regions are expected to be invariant to image noise and spatial filtering. 
Moreover, each region will be affected by geometric manipulations as the whole im-
age.  

In order to extract the patch, they apply an adaptive k-mean clustering technique 
and retrieve several largest regions. These regions are then fit by ellipsoids and their 
bounding rectangles are used as the patch to embed or detect the signature. 

Problems with this method are that image segmentation is dependent on image 
contents, objects and textures, etc., and severely sensitive to image modifications that 
remove image parts, for example cropping and translation of the image. Fig. 2 shows 
the original image and its segmented regions in Baboon and Airplane images. For 
convenience, we represent only boundaries of segmented regions. In the Baboon im-
age, we can easily select the largest and efficient regions for the patch, pointed by an 
arrow, but in the Airplane image, it is difficult to select the region for the patch. 

In our experiments, for the analysis of the segmentation-based synchronization ap-
proach, we first adopt an adaptive k-mean clustering technique to segment the image, 
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calculate the center of gravity, centroid, of segmented regions whose size is over pre-
defined thresholds to extract robust feature points, and then these points are decom-
posed into triangles, patches, by Delaunay tessellation. The results with this method 
will be described in section 4. 

 

Fig. 2. (a) The original image and (b) its segmented image in Baboon and Airplane images 

2.3   Tang and Hang’s Approach 

Tang and Hang [7] introduced a synchronization approach using the intensity-based 
feature extractor and image normalization. In general, the objects in the normalized 
image are invariant to small image modifications and this approach focuses on this 
fact. In order to extract feature points, they use a method called as Mexican hat wave-
let scale interaction. It determines feature points by identifying the intensity change of 
the image and is more robust to spatial distortions. Then, the disks of the fixed radius 
R, whose center is each extracted feature point, are normalized so that they can be 
invariant to rotation, translation, and partly spatial filtering of the image. They use 
these normalized disks as patches for watermark embedding and detection. 
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Fig. 3. The normalized disks: (a) the original image, (b) the blurred image, (c) the 10º rotated 
image, and (d) the 1.2× scaled image 

However, they fix the radius of the disks and an image normalization technique is 
sensitive to image contents used for normalization so that this approach shows severe 
weakness to scaling distortion. In fact, it is not easy to determine the radius of the 
disks efficiently. Fig. 3 shows the shape of the normalized disks with image distor-
tions. We can find that the normalized disks is robustly extracted with spatial filtering 
and rotation of the image, but has problems in the scaling distortion of the image, i.e. 
the normalized disk from the scale image is not matched with that from the original 
image (see Fig. 3d). 

For the analysis of this approach, we first calculate the normalized disks and ac-
quire six affine-transformation parameters. These parameters are used to formulate 
the normalized rectangle, the patch, for watermark embedding and detection. The 
results will be shown in section 4. 

3   Proposed Synchronization Approach 

In object recognition and image retrieval applications, affine-invariant features have 
been recently researched. Lowe [8] proposed a scale invariant feature transform that is 
based on the local maximum or minimum of the scale-space. Mikolajczyk and 
Schmid [9] suggested an affine-invariant interest point extractor by considering the 
local textures, and Tuytelaars and Gool [10] described a local image descriptor that 
extracted interest points and searched their near-by edges, contours, for affine-
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invariant regions. These affine-invariant features are highly distinctive and matched 
with high probability against a large case of image distortions, for example viewpoint 
changes, illumination changes, partial visibility, and noise of images. 

In content-based synchronization approaches, the extraction of the patch is very 
important for the robustness of the watermarking system and we suspect that the con-
sideration of local image characteristics will be helpful for the robust extraction of the 
patch. In this section, we propose a new synchronization method based on the scale 
invariant feature transform. 

Original
image

Difference of Gaussian (DoG) images

neighbors
in the same scale

neighbors
in the scale above

neighbors
in the scale below

Difference

1 Scaleσ

2 Scaleσ

3 Scaleσ

Difference

Difference

 

Fig. 4. The scale-space by using the difference of gaussian function and the closest neighbors 
of a pixel (filled a black color) 

3.1   Scale Invariant Feature Transform 

The scale invariant feature transform, called as SIFT descriptor, has been proposed by 
Lowe [8] and proved to be invariant to image rotation, scaling, translation, partly 
illumination changes, and projective transform. This descriptor extracts feature points 
by considering local image characteristics and describes the properties of each feature 
point such as the location, scale, and orientation. The basic idea of SIFT descriptor is 
detecting feature points efficiently through a staged filtering approach that identifies 
stable points in the scale-space. 

SIFT descriptor can extract local feature points from following steps: (1) select 
candidates for feature points by searching peaks in the scale-space from a difference 
of gaussian (DoG) function, (2) localize feature points using the measures of their 
stability, (3) assign orientations based on local image properties, and (4) calculate 
feature descriptors which represent local shape distortions and illumination changes. 

In order to extract candidate locations for feature points, they first acquire the 
scale-space by using a difference of gaussian function and retrieve all local maximum 
and minimum in the scale-space by checking eight closest neighbors in the same scale 
and nine neighbors in the scale above and below. These locations are invariant to 
scale changes of the image (see Fig. 4). 

After candidate locations have been found, they perform a detail fitting to the 
nearby data for the location, edge response, and peak magnitude. Then, candidate 
points that have a low contrast or are poorly localized are removed by measuring the 
stability of each feature point at the location and scale using a 2 by 2 Hessian matrix, 
H, as follows.  
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The r value is the ratio between the largest and smallest eigen values and used to 
control the stability. In experiment, they use a value of r = 10. 

To achieve invariance to image rotation, they assign a consistent orientation to 
each feature point based on local image properties and describe it relative to this ori-
entation. In order to assign an orientation, the gradient magnitude m and orientation � 
are computed by using the pixel difference as follows. 
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where L is the gaussian smoothed image with the closest scale where feature points 
are found. The histogram of orientations is formed from the gradient orientation at all 
sample points within a circular window of a feature point. Peaks in this histogram 
correspond to the dominant directions of each feature point. 

For illumination condition invariance, they define 8 orientation planes, make the 
gradient magnitude m and orientation � smooth by applying a gaussian filter, and then 
sample over a 4 by 4 grids of locations with 8 orientation planes. This feature vector, 
4x4x8 elements, is normalized by dividing the square root of the sum of squared 
components to reduce the effect of illumination changes. 

Local feature points obtained through SIFT descriptor are invariant to rotation, 
scaling, translation, and partly illumination changes of the image. 

3.2   Modification for the Watermarking Purpose 

The number and distribution of local feature points from SIFT descriptor is dependent 
on image contents and textures. Moreover, SIFT descriptor is originally devised for 
image matching applications so that it extracts many feature points densely distributed 
to over the whole image. In order to use this local invariant descriptor for the water-
marking purpose, we adjust the number, distribution and scale of feature points and 
remove points whose possibility to be detected, matched, with image distortions is 
low through experiments. Finally, the patch for watermark embedding and detection 
is formulated using this descriptor. 

SIFT descriptor represents the properties of each feature point such as its location 
(t1, t2), scale (s), and orientation (�), etc. Therefore, for watermark embedding and 
detection, we can make the patch that is invariant to rotation, scaling, and translation 
of the image by the following affine-transform equation. Through this transformation, 
we can convert the signature whose shape is a rectangle into the shape of patches in 
the image or vice-versa. 
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Images from natural scenes have many noise factors that affect feature extraction 
and we can decrease the interference of noise by applying gaussian filtering before 
feature extraction.  

In order to control the distribution of local feature points, we apply a circular 
neighborhood constraint used by Bas et al. [5]. The neighborhood size D is dependent 
on the image dimension and quantized by the r value as follows. 

r

heightwidth
D

+= . (4) 

The width and height represent the width and height of the image, respectively. 
The r value is a constant that control the size and set as 24 similar to Bas et al. How-
ever the value from the difference of gaussian function is used to measure the strength 
of each feature point. The neighborhood size must be carefully designed. If the size is 
small, the patch will be severely overlapped and if the size is large, the number of the 
patch will not be enough. 

SIFT descriptor considers image contents and hence the shape of the patch is ro-
tated and scaled dependently on image contents (see Fig. 7d). For embedding and 
detection of the signature into the patch, interpolation is necessarily required to trans-
form the rectangular signature to be matched with the shape of the patch or vice-
versa. In order to minimize the distortion of the signature through interpolation, the 
size of the patch must be set near to that of the rectangular signature. For adjusting the 
size of local features, we divide the scale of feature points into the range and apply 
magnification factors determined experimentally on the assumption that the size of 
watermarked images will not be excessively changed. 

The scale of feature points from SIFT descriptor is also related to the scale factor 
of a gaussian function in the scale-space. In our analysis, feature points whose scale is 
small have the low probability to be detected because they are easily disappeared 
when image contents are modified. Local feature points whose scale is large also have 
the low probability to be detected in distorted images because their locations easily 
move to other locations. Moreover, it means overlapping with other patches and it 
will degrade the perceptual quality of the image when the signature is inserted. There-
fore, we remove feature points whose scale is below 2 or over 10, these values are 
experimentally determined.  

Fig. 5 shows the patch from our proposed method for watermark embedding and 
detection. For convenience, we represent only one patch. We can find that the patch is 
formulated robustly even with spatial filtering, rotation, and scaling of the image. 

4   Experiment Results and Discussions 

In this section, we will compare the performance of the proposed method with that of 
three representative content-based synchronization approaches described in section 2. 
Method 1 is an approach proposed by Bas et al. [5], method 2 is a segmentation-based 
approach similar to Nikolaidis and Pitas’ approach [6], and method 3 is an approach 
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described by Tang and Hang [7]. For all methods, we applied a circular neighborhood 
constraint of Bas et al. [5] to obtain the homogeneous distribution of feature points. 

For experiments, we used five 512 by 512 pixel images: Lena, Baboon, Pepper, 
Airplane, and Lake images widely used in image processing applications (see Fig. 6). 
Each image is distorted by applying spatial filtering attacks such as mean filtering, 
median filtering, gaussian noise, and JPEG compression and geometric distortions 
such as rotation, scaling, translation, and cropping of the image.  

 

Fig. 5. The affine-invariant patch from the scale invariant feature transform: (a) the original 
image, (b) the blurred image, (c) the 10  rotated image, and (d) the 1.2× scaled image (the 
arrow represents the scale and orientation of the feature point) 

The robustness of the patch is measured by matching the patch from the original 
image with those from attacked images. If the pixel difference between the location of 
the patch from the original image and that from attacked images is less than two pix-
els, we considered it as the correctly matched patch. These small miss-alignments can 
be compensated by searching some pixels around the location of the patch originally 
found when we retrieve the embedded signature, prove the ownership, from the wa-
termarked patch. In particular, if images are attacked by geometric distortions, we 
transform the coordinates of the patch from attacked images into the coordinates of 
the original image by calculating their inverse transform. 

Table 1 shows experiment results. The data in an “Original image” row is the 
number of the patch extracted from the original image. The data in other rows is the 
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number of matching patches between the patch from the original image and those 
from attacked images. The root mean square (RMS) errors of the pixel difference, 
miss-alignments of matching patches, are represented in parenthesis (in pixels). Each 
item in table is the averaged value from five images.  

 

Fig. 6. (a) the Lena image, (b) the Baboon image, (c) the Pepper image, (d) the Airplane image, 
and (e) the Lake image 

Table 1. The number of matching patches from the original image and attacked images. RMS 
errors of the pixel difference are represented in parenthesis 

 Method 1 Method 2 Method 3 Proposed method 
Original image 45.5 57 31 43.6 

Mean 3×3 17.8 
(0.412) 

14.8 
(0.569) 

30.2 
(0.234) 

25.6 
(0.664) 

Median 3×3 19.2 
(0.379) 

12.4 
(0.664) 

21.8 
(0.491) 

25.4 
(0.664) 

80% JPEG 
compression 

25.6 
(0.294) 

21.4 
(0.442) 

26.2 
(0.557) 

33.0 
(0.457) 

Gaussian noise 16.6 
(0.369) 

16.2 
(0.546) 

22.4 
(0.658) 

21 
(0.748) 

Rotation (10°) 11.4 
(0.441) 

0 
(0.000) 

5.6 
(0.683) 

15.8 
(0.661) 

Scaling (1.2×) 12.8 
(0.502) 

13 
(0.673) 

0 
(0.000) 

5.2 
(1.325) 

Translation 
(30×30) 

24 
(0.000) 

0 
(0.000) 

7.6 
(0.443) 

31.2 
(0.311) 

Cropping (1/4) 27.6 
(0.000) 

0.6 
(0.067) 

8.2 
(0.387) 

31.6 
(0.143) 

Figure 7 shows the shape of patches by each content-based synchronization ap-
proach in the Pepper image. The shape of patches from method 1 and method 2 is a 
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triangle and the shape of patches from method 3 and our method is a rectangle. The 
background image (Fig. 7b) of method 2 is the boundary of segmented regions. The 
background image (Fig. 7c) of method 3 represents the residual image between two 
images scaled by different factors in Mexican hat wavelet scale interaction. 

As mentioned in section 2, method 1 is a synchronization approach based on fea-
ture points by the Harris corner detector and their Delaunay tessellation. The Harris 
corner detector is considerably sensitive to small image modifications and the trian-
gles of Delaunay tessellation from these feature points do not more correspond. 
Therefore, the results with method 1 show that the number of matching patches is 
decreased in attacks. Especially, in cropping and translation distortions of images, 
although the intensity of images is not modified, the matching patches, triangles, from 
Delaunay tessellation are severely different. The results with this method however 
were overall acceptable for the watermarking purpose. In general, the watermarking 
system can prove the ownership of contents if it can retrieve the embedded signature 
correctly from at least one patch. 

Method 2 is a synchronization approach using image segmentation and Delaunay 
tessellation. Although this approach shows high performance in image scaling, the 
performance with other attacks was poorer than other approaches. Moreover, when 
images were cropped, rotated, and translated, the center of gravity of segmented re-
gions easily moved to other locations and hence it was very difficult to formulate the 
patch robustly. 

Method 3 is based on an intensity-based feature extractor called as Mexican hat 
wavelet scale interaction and image normalization. As explained in section 2, the 
objects in the normalized image are invariant to small image modifications and rota-
tion. The results with this method show considerable robustness to spatial filtering 
attacks than other approaches. However the performance with geometric attacks is 
relatively low and especially when images are scaled, they failed to extract the match-
ing patches. 

The overall performance of the proposed method is satisfactory. Our method can 
extract the patch more robust than method 1 in spatial filtering, translation, and crop-
ping attacks because SIFT descriptor only considers local image characteristics and is 
invariant to illumination changes of the image. Our method is also more robust than 
method 3 in geometric distortions. We expect that the watermarking system using the 
proposed synchronization method will be resilient to spatial filtering and geometric 
distortions of the image. 

However, our method shows relatively a low performance in scaling distortion but 
it is acceptable for the watermarking purpose because the watermarking system can 
prove the ownerships of contents if it can retrieve the embedded signature correctly 
from at least one patch. If we can retrieve the signature from more patches, the reli-
ability and robustness of the watermarking system can be increased. Our on-going 
research is focused on increasing the robustness in scaling distortion and we expect to 
acquire more high performance. 

5   Conclusion and Future Works 

Synchronization is a process of identifying the location to embed and detect the signa-
ture and crucial for the robustness of the watermarking system. The content-based 
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synchronization approach is one of the solutions and our on-going research is focused 
on this approach. In this paper, we reviewed representative content-based synchroni-
zation approaches and proposed a new synchronization approach based on the scale 
invariant feature transform, called as SIFT descriptor. We suspect that the considera-
tion of local image characteristics will be helpful to extract features with robustness. 
The scale invariant feature transform considers these local image properties and is 
invariant to rotation, scaling, translation, and illumination changes of the image. We 
modified this descriptor for the watermarking purpose. 

In experiments, we applied various image distortions, attacks, such as spatial filter-
ing and geometric distortions and compared the performance of our approach with 
that of representative content-based synchronization approaches. The results support 
that the consideration of local invariant features is helpful in designing a robust wa-
termarking system and our synchronization approach is one of the efficient methods 

 

Fig. 7. The shape of patches by each content-based synchronization approach. (a) Method 1, (b)
Method 2, (c) Method 3, and  (4) Proposed method 
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to solve the problem of synchronization. Our future research is focused on increasing 
the robustness with geometric attacks and applying the patch for watermark embed-
ding and detection. We believe that our watermarking approach using this local in-
variant feature will be also robust. 
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Abstract. Bayesian filtering is one of the most famous anti-spam mea-
sures. However, there is no standard implementation for treatment of
Japanese emails by Bayesian filtering. In this paper, we compare several
conceivable ways to treat Japanese emails about tokenizing and corpus
separation. In addition, we give experimental results and some knowledge
obtained by the experiments.

1 Introduction

Recent years, spam is rapidly increasing, because email is much cheaper method
to send out some information than other advertising methods such as direct mail
or telemarketing. Nowadays spam becomes a terrible obstacle to email commu-
nication, hence it is important for users and postmasters to keep spam out of
their maildrop.

In order to keep spam out of maildrop, not only users but Internet Service
Providers (ISPs) and Mail User Agents (MUAs) have applied anti-spam features
into their products and services. For example, Mozilla [1], Eudora [2] and Outlook
[3] have applied spam-detection as standard features.

One of the most famous anti-spam measures is Bayesian filtering. It has
become famous in the past several years. Many implementations of Bayesian
filtering have been developed, motivated by and based on Graham’s essay [4].
Since these implementations work alone as a proxy or via other program like
procmail[5], they can be applied easily. However, there is no standard imple-
mentation to process Japanese emails in Bayesian filtering.

Spam causes a social issue also in Japan (In the case of Japan, spam sent to
email address assigned to cell phone is a big problem). Some Japanese email users
receive spams written in Japanese, others receive spams written in English, and
some unfortunate users receive both of them. For example, authors exchange
both Japanese and English emails with an identical email address, and also
receive both Japanese and English spams by the address.

C.H. Lim and M. Yung (Eds.): WISA 2004, LNCS 3325, pp. 135–143, 2004.
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In this paper, we consider and make experiments in several conceivable points
to treat Japanese emails. First, we focus on how to extract tokens from Japanese
sentence. It is important to extract tokens, because the probability that received
email is a spam is calculated from probabilities for tokens, that the email with
the token is a spam. Second, we consider how to separate corpuses according to
language written in email. While most of Japanese implementations of Bayesian
filtering separate corpuses between Japanese emails and non-Japanese emails,
choosing corpus for each token, not for each email, will bring more accuracy. A
part of the result may be useful for users who treat both English emails and
non-English emails, not only Japanese.

Corpus is a collection of words appeared in previous spams and nonspams.
In detail, it contains two data:

– number of learned spams and nonspams, respectively,
– frequency of each word in spams and nonspams, respectively.

From above two data, each word is given a probability that an email which
contains the word is a spam.

2 Related Work

In order to avoid spam, various methods have been proposed and used. Most of
proposed methods are classified into following.

– Watching behavior of SMTP connection (e.g. Greylisting [6])
– IP Blacklisting (e.g. ORDB [7])
– Domain authentication (e.g. SPF [8], senderID [9])
– Content filtering: rule-based (e.g. Spamassassin [10]), statistical (e.g. naive

Bayes [4, 11, 18–20], Markovian [12]), collaborative (e.g. Razor [13])
– Challenge/response (e.g. [14–17])

Watching behavior of SMTP connection, IP Blacklisting, and domain au-
thentication are mainly used in mail servers. It is pretty hard for users to apply
these methods on their PCs, because a mail server can omit some informa-
tion of sender and a user cannot intervene in transaction when it delivers to
users’ maildrop (For example, a user cannot apply greylisting without control of
his/her mail server). On the other hand, users can easily apply content filtering
and challenge/response, without modifying servers and SMTP (needless to say,
these methods can work on a server for convenience of users.)

Nowadays, statistical filtering methods have been applied broadly to avoid
spam, especially Bayesian filtering (naive Bayes) which has been popular since
Graham’s essay [4] came out. Bayesian filter calculates the probability for every
word that a randomly chosen email containing the word will be a spam, accord-
ing to past spams and nonspams. Furthermore, Bayesian filter can add tokens
appeared in the email to its corpus, according to judgment of the Bayesian filter
itself. Therefore, a user only has to train his/her filter in case his/her filter makes
a mistake. Even if spammers use obfuscated words, Bayesian filter also learns
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these words and obfuscated words are used as obvious evidence. There are many
available implementations, for example bsfilter [18], scbayes [19], bogofilter [20]
and popfile [21].

3 Consideration in Bayesian Filtering
for Japanese Environment

As Bayesian filtering is used around the world, it is also used in Japanese envi-
ronment, which treats both Japanese email and English email. In order to apply
Bayesian filtering in Japanese environment, some modification on the filtering
scheme for improving efficiency of Bayesian filtering should be considered.

There are many Bayesian filtering implementations intended to be used in
Japanese environment. These implementations have several features specialized
for Japanese environment. We focus on these features, especially about extract-
ing tokens from a sentence and separating corpus according to language written
in an email.

3.1 Method for Extracting Tokens

Because Japanese does not have a blank to separate a sentence into tokens, it
is not so easy to extract grammatical words from a sentence. In Japanese, the
most popular way to extract tokens until now is variants of bigram which utilize
the cayegory of Japanese characters (hiragana, katakana and kanji). Basically,
bigram is a method that all pairs of consecutive two characters are extracted
as tokens. In fact, bigram is usually adapted with some modification, because
kanji, hiragana and katakana are used with different way in Japanese. It is also
a simple and easy way to implement that regarding each adjacent characters in
same category (kanji, hiragana, and katakana) as a token. Bigram seems fairly
effective for Bayesian filtering because Japanese has many phrases composed of
two, three or four kanjis.

If a user sticks to grammatical word, he/she can also use external tools like
KAKASI [22], ChaSen [23] or MeCab [24]. While these tools are originally in-
tended for morphological analysis or kanji-to-hiragana conversion, tokenizing is
now one of the most well-known usages of these tools.

Now we give several samples. Bsfilter [18], one of Bayesian filtering imple-
mentations written in ruby, has following rules to extract tokens from a Japanese
email.

– For a sequence of kanjies, adjoining two kanjies is respectively extracted as
a token. If kanji stands alone or continues only two characters, the whole is
extracted as one token.

– All contiguous katakanas are extracted as one token as the whole.
– Hiraganas are not extracted as any token.

Scbayes [19], another implementation written in Scheme1, has following rules.
1 Scheme is one of varieties of the Lisp programming language.



138 Manabu Iwanaga, Toshihiro Tabata, and Kouichi Sakurai

– Basically, contiguous two characters are extracted as a token.
– However, combination of hiragana and kanji in that order is ignored.

Some implementations like bogofilter [20] do not support extracting tokens
from Japanese sentences, so some tool must convert Japanese email to tokenized
text which an implementation can extract tokens from. These tokenizing meth-
ods are depicted as Figure 1.

Fig. 1. Three tokenizing methods.

3.2 Method of Separating Corpus

Relative proportions of spams and nonspams are not same between in one’s
Japanese emails and in one’s English emails. For example, one of the authors’
email addresses receives many Japanese spams but only a few English spams,
while another receives many English spams but a few Japanese spams. It is
thought that the former address was gathered by and exchanged among Japanese
spammers, and the latter one by/among spammers in English-speaking market.
On the other hand, we can receive important English emails by the latter email
address, for example, acceptance letter from the international conference and
confirmation of hotel reservation. This situation causes high spam probabilities
for whole words of particular language. It is undesirable that this bias causes
more false-positives (FP) in emails of particular language, because Bayesian
filtering is based on the assumption that we do not want a classification to be
affected by the relative proportion of spams and nonspams.

To cope with this situation, most of Japanese implementations separate cor-
puses for Japanese emails and non-Japanese emails. In these implementations,
filters first make a decision whether an email is written in Japanese or not. That
is to say, the implementation distinguishes language written in an email, and
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Fig. 2. Our Proposal for separating corpus.

then a spam probability is calculated with one corpus corresponding to the lan-
guage. It is reasonable to reduce false-positives arising from language in which
email is written. It is easy to distinguish Japanese emails from non-Japanese
emails, reading “charset” header field [25] or checking character code.

However, we wanted to detect language-independent evidence, which is con-
tained in header, etc. To realize this, we tried to distinguish language of each
token, not each email. This method is expected to reduce both false-positives and
false-negatives (FN). This method can also deal with an email which contains
two or more languages as a message body.

Our method is represented as Figure 2. Upper one shows traditional separa-
tion for each email and lower one shows our proposed separation for each token.
In our method, non-Japanese tokens in Japanese emails are learned by a corpus
for non-Japanese tokens. On the other hand, corpus should also count number of
learned spams and nonspams. Because tokens in Japanese emails are learned by
either Japanese and non-Japanese corpuses, Japanese email should be counted
by both of the corpuses. In this experiment, we leave this matter open and use
simple way. We count an email as both Japanese and English email, in propor-
tion to ratio between Japanese tokens and English tokens. For example, an email
which contains 300 Japanese tokens and 100 English tokens is counted as 0.75
Japanese emails and 0.25 English emails.

4 Experiment

We performed experiments on techniques concerning about treating Japanese
emails mentioned above. In every experiment, emails were divided randomly
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into ones for training and ones for testing. We call the proportion of emails
for training on all emails in the experiment initial training ratio. For example,
we have 1000 nonspams and 600 spams, and initial training ratio is 1/5, we
train 200 nonspams and 120 spams. We changed initial training ratio to several
values to know characteristic of our method associated with amount of training.
At first, emails for training are learned as spams and nonspams by a Bayesian
filter, respectively. Then emails for testing are classified to spam or nonspam by
the filter, and we count numbers of false-negatives and false-positives. Because
corpuses are cleared at the end of each testing, each experiment is independent.

Performance is evaluated by rate of false-positives and it of false-negatives.
The former is an error that a nonspam is wrongly classified as a spam, and the
latter is an error that a spam is wrongly classified as a nonspam.

In the following experiments, we used bsfilter (Revision 1.35.4.3, [18]) as
an implementation of Bayesian filtering, with Graham’s method of calculation
and 0.9 as threshold, and then simulated the other methods when needed. It is
because we want to look at core differences between methods and omit the other
differences.

4.1 Method for Extracting Tokens

We performed experiment with three tokenizing methods, bsfilter-styled bigram,
scbayes-styled bigram (simulated on bsfilter) and grammatical tokenizing. We
used ChaSen [23] as a grammatical tokenizer.

The number of emails used for this experiment is shown in Table 1. Condition
1 assumes that there are spams as many as nonspams, and Condition 2 assumes
that there are more nonspams than spams. The emails are collected from spams /
nonspams we received and spams we caught by a honeypot email account. Note
that emails used in this experiment are all Japanese emails, because tokenizing
methods are intended only for Japanese.

Table 2 shows the result of experiment between tokenizing methods. In case
there are spams as many as nonspams (Condition 1), there were about 0.34% of
false-positives and 1.70% of false-negatives on an average, and difference between
tokenizing methods was little (Roughly speaking, difference between tokenizing
methods is only ±0.07% of false-positives and ±0.41% of false-negatives from
average). In this case, difference between tokenizing methods was little.

In case there are more nonspams than spams, false-positive decreased and
false-negative increased (Condition 2) from above case, and difference of false-
negatives between tokenizing methods was not negligible (difference of false-

Table 1. Number of emails which is used to experiment about extracting tokens.

initial nonspam spam
training Japanese Japanese

Condition 1 293 293

Condition 2 1659 293
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Table 2. Comparison between token-extracting methods.

initial method Condition 1 Condition 2
training FP FN FP FN

3/4
bsfilter 0.41% 1.42% 0.00% 6.69%
ChaSen 0.27% 1.94% 0.00% 8.72%
scbayes 0.27% 1.42% 0.00% 15.88%

1/2
bsfilter 0.27% 1.39% 0.02% 11.22%
ChaSen 0.27% 1.94% 0.02% 14.18%
scbayes 0.34% 2.11% 0.00% 23.64%

negative reached about at ±5% from average.) Bsfilter-styled bigram had the
best performance with 6.69% and 11.22% of false-negatives; ChaSen had second-
best with 8.71% and 14.18%. However, scbayes-styled bigram made the most
errors, about twice as many as bsfilter. From this result, we can say that gram-
matical tokenizing does not always yield good performance in Japanese.

4.2 Method of Separating Corpus

Next, we performed experiments to compare between two methods of separating
corpus. One is a way that selects a corpus for each email, and the other is a way
that selects corpus for each token. The number of emails used for this experiment
is shown in Table 3. Condition 3 represents a case that there are spams as many
as nonspams, and Condition 4 represents a case that there are more nonspams
than spams. Similar to the experiment in Section 4.1, the emails are collected
from spams / nonspams we received and spams we caught by a honeypot email
account. However, this time we included non-Japanese spams / nonspams.

Table 4 shows the result of comparison between corpus separation styles.
Through Condition 3 and 4, the result shows that our method, the way that
selects a corpus for each token, got less false-positives with almost same amount
of false-negatives. We think it is because spam has more characteristics which
are language-independent than nonspam.

Because false-positive is serious problem on using Bayesian filtering, it is
significant that our method can decrease false-positives without increase of false-
negatives.

Table 3. Number of emails for comparison about corpus separation.

Init. nonspam spam
training JA non-JA Total JA non-JA Total

Condition 3 1167 55 1222 293 929 1222

Condition 4 1680 257 1937 75 164 239

JA: Japanese emails, non-JA: non-Japanese emails.
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Table 4. Experiment about separating corpus.

Number of Initial for each email for each token
emails training FP FN FP FN

Condition 3

4/5 0.99% 3.84% 0.48% 3.86%
3/5 0.97% 4.35% 0.55% 4.28%
2/5 1.45% 5.26% 0.81% 5.49%
1/5 2.29% 7.10% 1.46% 6.84%

Condition 4

4/5 0.32% 4.59% 0.24% 4.75%
3/5 0.37% 6.09% 0.23% 5.42%
2/5 0.47% 7.39% 0.25% 7.87%
1/5 1.03% 11.68% 0.24% 12.63%

5 Conclusion

In this paper, the authors have explained issues on Bayesian filtering for Japan-
ese. To adapt Bayesian filtering into Japanese email environment, some modi-
fication is usually made to Bayesian filtering. The authors have looked at two
factors and experimented on several methods which have applied by existing
implementation or which the authors have proposed.

First, we have focused on methods of extracting tokens from sentence. Gram-
matical tokenizer does not always yield the best performance for Japanese emails.

Second, we have focused on methods of separating language-specified cor-
puses. False-positives can be decreased by choosing language-specified corpus
for each token, not for each email, without increase of false-negatives. Because
false-positive is serious problem on using Bayesian filtering, it is significant that
choosing corpus for each token can decrease false-positives without increasing
false-negatives.

While the authors have obtained good result by choosing corpus for each
token, modification for counting email learned by Bayesian filter is very intuitive.
More sophisticated way for counting emails may yield better performance than
our way.
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Abstract. Group key management presents a fundamental challenge
in secure dynamic group communications. In this paper, we propose an
efficient group authenticated key agreement protocol (EGAKA), which
is designed to be fully distributed and fault-tolerant, provides efficient
dynamic group membership management, mutual authentication among
group members and is secure against both passive and active attacks.
The features of EGAKA are as follows: Firstly, EGAKA can be built
on any general two-party key exchange protocol without relying on a
particular one. EGAKA achieves scalability and robustness in heteroge-
nous environments by allowing members to use any available two-party
protocol in common and deliberately designed fault-tolerant mechanism
in dynamic membership management. Secondly, EGAKA provides ex-
tremely efficient member join services in terms of both communication
and computation costs which are constant to the group size. This is a
very useful property in the scenarios with frequent member addition.

1 Introduction

In recent years, more and more applications rely on peer-to-peer group commu-
nications. Examples include teleconferences, replicated servers, command and
control systems, and communications in ad hoc networks. Providing ubiquitous
and reliable security services is very important in these environments and is con-
sidered as an open research challenge [2, 23]. The basic requirement for secure
group communications is the availability of a common secret group key among
members. Therefore, key management, as the corner stone of most other secu-
rity services, is of the primary security concern. Key management schemes can
be classified into two flavors: centralized key distribution and distributed key
agreement. Key distribution protocols aren’t suitable for dynamic peer groups,
because of many inherent drawbacks and limitations [13]. Many key agreement
protocols in the open literature are the extensions of two-party Diffie-Hellman
(DH) key exchange protocol [2–6, 10, 13, 16, 18, 20, 21, 25, 26, 29], except for some
recently proposed protocols based on Weil pairing [17, 22]. All these protocols
fall into two different categories: One deals with static groups; while the other
deals with dynamic groups.
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1.1 Related Works

In this subsection we summarize related works on group key agreement protocol.
Most group key agreement protocols are based on generalizations of the two-
party DH key exchange protocol. These protocols usually rely on certificates not
only to perform entity authentication but also to resist active attacks such as
man-in-the-middle attack, under the assumption of the deployment of public key
infrastructure. But this may not be always true in dynamic groups formed in
the heterogeneous environments.

The following protocols focus mainly on efficiency in terms of computation
and communication costs. Burmester et al. [9] proposed a protocol which takes
only two rounds and three modular exponentiations per member to generate
a group key. However, the communication cost is significant, requiring 2n (n:
group size) broadcast messages, and this protocol is only secure against pas-
sive attacks. Steiner et al. [25] addressed dynamic membership issues in the
developing of Group Diffie-Hellman (GDH) protocol. GDH protocol is fairly
computation-intensive, requiring O(n) exponentiations, but bandwidth efficient.
A-GDH and SA-GDH were proposed by Ateniese et al. [2] based on GDH. Two
protocols are, however, proved to be vulnerable to a number of potential at-
tacks [19]. The computation and communication costs of both protocols are
high, each requiring n rounds and O(n2) exponentiations. TGDH, a tree-based
key agreement protocol proposed by Kim et al. [13], is another modified ver-
sion of GDH. TGDH combines a binary tree structure with the GDH technique
and is efficient in terms of computation as most membership changes require
O(log n) exponentiations. Note that key establishment and authentication is-
sues are not explicitly discussed in TGDH. Another protocol by Yang et al. [29]
is an ID-based authenticated group key agreement protocol. However, dynamic
membership management in this protocol is not clear. Key agreement based on
group shared password can be found in [1]. There are also some three-party key
agreement protocols based on Weil pairing [17, 22]. Many other protocols focus
mainly on the security itself. These protocols are typically of high inefficiency.
The protocol proposed by Bresson et al. [4–6] is the first provably secure one.
It is based on GDH protocols by adding authentication function. The entity
authentication is done via signatures on all the message to frustrate active at-
tacks. Katz et al. [11] proposed another provably secure protocol, which is based
on Burmester’s protocol by introducing signature operations for authentication.
Some conference key establishment protocols with security proofs can be found
in [3, 26].

This paper proposes an efficient group authenticated key agreement proto-
col (EGAKA). Except for common functionalities, EGAKA distinguishes itself
from other existing protocols as follows: Firstly, EGAKA can be built on any
two-party protocols without relying on a particular one. Therefore, EGAKA
achieves scalability and robustness in heterogenous environments by allowing
members to use any available two-party protocol in common. Secondly, EGAKA
provides extremely efficient member join service in terms of both communica-
tion and computation costs which are constant regardless of the group size. This
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is a very useful property in the scenarios with frequent member addition. The
remainder of the paper is organized as follows. We brief the notation, necessary
terminology, and some primitives in Section 2. Then in Section 3, we discuss
the goals and assumptions of EGAKA. This is followed by the description of
EGAKA in Section 4. In Section 5, we compare the complexity of EGAKA with
those of other proposed protocols. Security issues of EGAKA is then discussed
in Section 6. Finally, the conclusion is given in Section 7.

2 Notation and Primitives

The notation as used throughout the paper is shown below:

{·}K symmetric encryption algorithm using key K
h(·) one way hash function
KG group secret key
Sij shared secret by Mi and Mj , e.g. αxixj

Kij peer-to-peer session key between Mi and Mj

Bij blinded Sij , i.e., Bij = h(Sij)
d height of a key tree

Mî Mi’s sibling in the key tree
Nlj tree node j at level l
Ei the partners set of Mi

We also use the following definitions and cryptographic primitives:
Key Tree is used in the past for centralized group key distribution systems.

The logical key hierarchy (LKH) method [27, 28] is the first approach. Almost
all the later group key management protocols adopt such kind of binary key tree
structure because of its inherent efficiency. TGDH and ELK are such examples
[13, 20, 21]. The structure of key tree used in EGAKA is depicted in Figure 1.
There are 3 types of nodes: root node, leaf node and interior node. A leaf node
is also called an isolated leaf node, if his sibling is an interior node. For example,
N22 is such a node. Each leaf node is associated with a group member. Every
node in the key tree has a key pair: a secret key and the corresponding blinded
key. The secret key is shared only by the members whose corresponding nodes
belong to the subtree (if any) rooted in this node and thus for secure subgroup
communication. For example, the left node at level 1 has a secret key K135 and
a blinded key B135 = h(K135), and K135 is shared only by M1, M3 and M5.
The blinded key is for group key computing. How to securely and efficiently
assign the appropriate subset of these intermediate keys to each group member
is always the most challenging problem in the protocol design. Note that in
EGAKA, neither secret key nor the blinded key is transmitted in plaintext.

The group key is computed as: KG = K123456 = h(B135||B246); B135 =
h(K135) = h(h(B15||B3)); B246 = h(K246) = h(h(B24||B6)); B15 = h(K15); B3 =
h(K3); B26 = h(K26); B4 = h(K4), where || denotes message concatenation. In
the later description, we do not distinguish between group member and its cor-
responding leaf node. To simplify our subsequent description, we use the term
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key-path, denoted as KP ∗
i , which is a set of nodes along the path of Mi from

itself to the root node (except for the root node). We also use the term co-path
as defined in [13], denoted as CP ∗

i , which is the set of siblings of each node in the
key path of Mi. For example, the KP ∗

5 and CP ∗
5 of member M5 are the two sets

of nodes {N32, N21, N11} and {N31, N22, N12}, respectively. The cardinalities of
both CP ∗

i and KP ∗
i depend on Mi’s position in the key tree and equal to its

level. For M5 at level 3, the cardinalities of KP ∗
2 and CP ∗

2 are both 3. There-
fore, every member derives the group key from all the blinded keys of its co-path
nodes and its own secret share. A partner of Mi is defined as the member who
shares a peer-to-peer session key with Mi. We use Ei denote the partners set of
Mi. In Figure 1, E1 consists of M2, M3 and M5.

= =

=

=

=

=

=

=

Fig. 1. Notation for key tree.

Two-party authenticated key agreement protocol of any kind can be used in
EGAKA, if only it provides explicit key authentication and entity authentica-
tion, perfect forward secrecy, resistance to known-key attacks. A typical protocol
is the one proposed by Ateniese et al., which is a provable secure two-party gen-
eralized DH authenticated key exchange protocol (A-DH) [2]. The security of
A-DH is directly based on the well known two-party Decisional Diffie-Hellman
(DDH) problem [25]. The A-DH is a two-round protocol and provides implicit
key authentication and entity authentication without requiring a priori knowl-
edge of the long term public key of the parties involved. And the certificates can
be piggy-backed onto existing protocol messages [2]. By adding some additional
key confirmation messages, A-DH can provide explicit key authentication in-
stead of implicit key authentication. Other qualified protocols include password
based two-party key agreements protocols such as AMP etc. [12, 14, 15].

3 Goals and Assumptions of EGAKA

In the design of EGAKA, we bear the following goals in mind. Firstly, EGAKA
should provide flexible and efficient member join/leave services in terms of com-
munication and computation costs. In particular, we emphasize on the scenarios
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with frequent member additions. Such scenarios include many multicast appli-
cations. In member leave service, we focus on fault-tolerant property to achieve
robustness. Secondly, EGAKA should provide entity authentication. Every mem-
ber should be authenticated when joins the group, and thus frustrates mas-
querading and eavesdropping. The trust model in EGAKA is that any single
current member can authenticate the new members and accept them. This is
assumed because we do not consider insider attacks as our focus is on the se-
crecy of group keys and the integrity of group membership. The latter means
the inability to spoof authenticated membership. Consequently, insider attack is
not relevant in this context since a malicious insider can always reveal the group
key or its own private key, thus allowing for fraudulent membership. Thus, by
definition, a new member is said to authenticated only if it was authenticated at
least once by any current group member. Thirdly, EGAKA should be resistant
to known-key attack, while providing forward secrecy, backward secrecy and key
independence [2, 13, 21]. In the design of EGAKA, we also address an important
principle: the protocol should be fully distributed, which means no centralized
KDC should be involved during both key establish and key update processes and
the secret keying information should only be generated, computed and transmit-
ted by group member itself. The existence of centralized third party violates the
nature of key agreement protocol and is also impractical in many scenarios [2,
13].

We assume the size of dynamic peer groups to be less than 200 (empirically),
because large groups are likely to have very frequent membership changes and
much diluted trust. The former will cause lots of overhead and the latter negates
the need for contributory group key agreement. In dynamic groups, groups are
usually formed on-the-fly, and therefore, members tend to have different de-
ployments of security primitives. And different primitives demand different as-
sumptions. For example, in order to resist man-in-the-middle-attack, both of
two parties in DH key exchange protocol must have certificates issued by some
CA to certify their public key; while in password-based key exchange protocols,
shared password must exist between the two parties. In order to adapt to these
heterogenous environments, EGAKA is designed to work with any two-party
authenticated key agreement protocol in common among groups members, that
is, group members can choose any desired two-party protocol available to use by
negotiation (e.g., either DH protocol or password based key agreement proto-
col, etc.); group key can then be established contributorily based on the chosen
protocol. Thus, the robustness and flexibility is achieved in EGAKA.

4 EGAKA Protocol

EGAKA consists of two basic sub-protocol suites: key establishment protocol
(EGAKA-KE) and key update protocol (EGAKA-KU).
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4.1 EGAKA-KE

EGAKA-KE includes two phases: Phase I is to complete group entity authenti-
cation by applying any chosen two-party authenticated key agreement protocol;
Phase II is the group key generation process.

Phase I: Entity Authentication. In Phase I, group members first negotiate
the two-party authenticated key agreement protocol and the key tree structure
which are to be used in the consequent part of the protocol. This can be done
by simply using explicit message broadcast among members. In these messages,
group members can randomly poll which member to generate the key tree struc-
ture and agree on the chosen two-party protocol. The poll-chosen member then
broadcasts the tree structure to all group members; hence, every group member
could determine his own position in the key tree. In order to form the binary
key tree structure and facilitate the following group key computing process,
some members must perform authentication with up to d partners by applying
the chosen two-party protocol. For example, in Figure 3, M1’s partners are M2,
M3 and M5.

The binary tree generating process can be as follows: Two members are first
randomly chosen to join the key tree and are supposed to authenticate each
other and form one interior node. Another two members are then chosen to join
the current key tree and are supposed to perform entity authentication with the
current two members, respectively, and forms another two interior nodes. This
process repeats till the last member is chosen. An example is given in Figure 2.
Obviously, the number of partners for any specific group member ranges from
1 to d. Note that the two-party authenticated key agreement protocol executes
exactly n− 1 times.

1M 2M

2M 3M 5M 1M 1M 1M 4M 6M
2M

2M

3M7M
2M 1M

1M 4M2M3M

2M 3M 1M 1M 2M4M

Fig. 2. Key tree structure generating process: an example.

As mentioned above, the entity authentication is achieved by applying the
chosen two-party protocol among group members and the number of partners for
each member is according to his position in the key tree. On obtaining the tree
structure, all group members perform entity authentication with their assigned
partners simultaneously. Therefore, the two-party authenticated key agreement
protocol is simultaneously executed n − 1 times. The round number is exactly
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Fig. 3. Results of Phase I.

that of the underlying two-party protocol. A set of peer-to-peer session keys
are therefore established as the execution results. Without loss of generality, we
choose A-DH as an example and show the precise procedure in Appendix. Note
that no peer-to-peer session key confirmation round is executed in Phase I; hence
only implicit peer-to-peer session key authentication and entity authentication
is provided. For the key structure in Figure 2, the execution results are depicted
in Figure 3.

Thus, at the end of Phase I, all group members are implicitly authenticated
and a set of peer-to-peer session keys are established among members. The es-
tablished peer-to-peer session keys not only assure the efficient and secure trans-
mission of keying information in protocol Phase II (i.e. act as key encryption key
(KEK)), but also (some of them) act as secret key shares of the group members
according to the key tree.

Phase II: Group Key Generation. EGAKA-KE Phase II consists of d
rounds. Every group member computes one more the secret key along its key-
path each round and finally computes the group key after d rounds. All inter-
mediate keying information is encrypted by symmetric cipher using peer-to-peer
session keys established in Phase I. Therefore, all the session keys are confirmed
and each group member assures its partners’ aliveness. (This is important, be-
cause no assurance of aliveness can be exploited by many attacks [19].) The
protocol operates as follows in Figure 4.

Figure 5 gives an example of Phase II. In round 1, each member first com-
putes the key and blinded key of its key-path node at level 2. Then M1 sends the
keying information {B15||M1}K13 to M3, because B15’s corresponding node be-
longs to M3’s co-path and M1 and M3 share a peer-to-peer session key K13.
The same routing is followed by other members. Note that the member ID
is included in the message to strength the authentication. Therefore, at the
end of round 1, M1 obtains B37; M2 obtains B4; M3 obtains B15; M4 obtains
B26. In round 2, every member first computes the key and blinded key cor-
responding to the node in its key-path one-level-up. So M1 computes K1357

and B1357; M2 computes K246 and B246; M3 computes K1357 and B1357; M4

computes K246 and B246. Again each member sends out the keying informa-
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Protocol EGAKA-KE Phase II :
Let {M1, · · · , Mn} be the set of group members. For Mi, let {N1i, N2i, ...,Nli} and
{N1î, N2î, ...,Nl̂i} denote the members of KP ∗

i and CP ∗
i , respectively.

Round 1 :
Mi, i ∈ [1, n] computes: KN(d−1)i = Kîi, if Mi is at d, KN(d−1)i = Ki, if Mi is at

d − 1, and BN(d−1)i = h(KN(d−1)i ), where Ki is Mi’s secret share (a random nonce).

Mi, i ∈ [1, n] −→ {Mj |Mj ∈ Ei, N(d−1)i ∈ CP ∗
j }: {BN(d−1)i ||Mi}Kij

.

Round r (2 ≤ r < d) :
Mi, i ∈ [1, n] decrypts the received message(s) and obtains BN

lî
of Nl̂i ∈ CP ∗

i .

and computes the key pair of N(l−1)i ∈ KP ∗
i : BN(l−1)i and KN(l−1)i .

Mi, i ∈ [1, n] −→ {Mj |Nl̂i ∈ CP ∗
j } (if any): {BN

lî
||Mi}KNli

.

Mi, i ∈ [1, n] −→ {Mj |Mj ∈ Ei, N(l−1)i ∈ CP ∗
j } (if any):{BN(l−1)i ||Mi}Kij

.

Round d :
Mi, i ∈ [1, n] decrypts the received messages. M1 and M2 obtain the blinded key
of their co-path nodes at level 1, respectively. Other members obtain the blinded
key of their co-path nodes at level 2, respectively.
M1 −→ {Mj |N12 ∈ CP ∗

j }: {BN12 ||M1}KN11
;

M2 −→ {Mj |N11 ∈ CP ∗
j }: {BN11 ||M2}KN12

.

Upon receiving the above message, each group member computes the group key:
KG = h(BN11 ||BN12).

Fig. 4. Protocol EGAKA-KE Phase II.

=

== =

Fig. 5. An example of key establishment process.

tion. Therefore, M1 multicasts {{B37||M1}K15 , {B1357||M1}K12}; M2 multicasts
{{B4||M2}K26 , {B246||M2}K12}; M3 unicasts {B15||M3}K37 . Thus, at the end
of round 2, M1 gets B246; M2 gets B1357; M4 gets B26; M5 gets B37; M6

gets B4; M7 gets B15. In round 3, M1 and M2 multicast the following mes-
sage: {B246||M1}K1357 , {B1357||M2}K246 , respectively. Upon receiving this mes-
sage, every member now can independently compute the group key as KG =
h(B246||B1357).

4.2 EGAKA-KU

In order to accommodate frequently group membership changing, key agreement
protocol in dynamic groups should be flexible and fault-tolerant, and provide
efficient group re-keying process. To make our protocol concrete, throughout
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this section we use A-DH [2] as the chosen underlying two-party protocol. In
A-DH, the following additional notation is used:

p, q large prime integers, q|φ(p)
G unique subgroup of Z∗

p of order q
α exponential base

xi, α
xi long-term secret/public key pair of Mi

ri Mi’s secret nonce
Sij shared secret by Mi and Mj , e. g., αxixj

Member Join Protocol. Again assume there are n members (M1, ..., Mn) in
the current group and a new member Mn+1 wants to join the group. Mn+1 first
broadcasts a joining request message. The message also includes his available
two-party authenticated key agreement protocols in hand. Upon receiving this
message, a sponsor Ms at level l is chosen that is responsible for authenticating
Mn+1 and the group key updating. Ms is chosen according to the following rule:
Choose an isolated leaf node if any, and the shallowest and leftmost one is the
first choice; if no such node, the shallowest and leftmost leaf node is chosen.

Next, Ms creates a new interior node and a new leaf node, and promotes
the new interior node to be the parent of both new member node and himself.
Then Ms and Mn+1 execute the chosen two-party authenticated key agreement
protocol and establish a fresh peer-to-peer session key K(n+1)s. Ms then updated
all the key pairs of its key-path. (Of course, if Ms is not an isolated leaf node,
then Ms must first obtain the updated blinded key from its sibling Mŝ before
updating all the key pairs.) Then Ms divides the whole group into l subgroups
according to its co-path nodes. Members from each subtree rooted in the co-path
node of Ms form a subgroup. Clearly, the members of each subgroup only need
to update the blinded key corresponding to the sibling node of their subgroup
root node. Ms thus encrypts the according keying information for each subgroup
and multicasts them together. The joining protocol is depicted in Figure 6.

An example is shown in Figure 7. The new member M6 wants to join the
group, so he broadcasts a join request together with a fresh αr6 . Then M3 is the
sponsor according to the key tree. So M3 first creates a new interior node and
a new leaf node for M6, and promotes the new interior node to be the parent
of both M6 and himself. After that, M6 computes: αr3Ss(n+1) , K36, B36, B1356

(Ss(n+1) = αx6x3) and divides the group into three subgroups. Then M6 broad-
casts: {B1356||M3}KG , {B36||M3}K135 , {B15||B24||M3}K36 , α

r3Ss(n+1) . On receiv-
ing the message, all group members can independently update the new group
key. It takes only 2 rounds to finish key updating process.

Member Leave Protocol. Fault-tolerance property is our main focus in the
design of member leave protocol. Again we assume there are n (n > 2) members
in the current group and Mx is going to leave the group. The sponsor Ms is
chosen as before. In order to provide forward secrecy, the leaving member is
prohibited to know the new group key afterwards. Thus, current members cease
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Member Join Protocol :
Let Mn+1 be the new member, Ms be the sponsor at level l, and Mŝ be the
sibling member of Ms if any.
Round 1:

Mn+1 broadcasts: αrn+1 ||Join||Protocol choice.
Round 2: (if any)

Mŝ unicasts Ms: {Bsŝ||Mŝ}Ksŝ .
Round 3 (2):

Ms computes the new key pair :
Ks(n+1) = αrsrn+1 , Bs(n+1) = h(Ks(n+1)).

Ms updates all blinded keys of its key-path: B1s, B2s, ..., B(l−1)s.
Ms broadcasts: {B1s||Ms}KG , {B2s||Ms}K1s , ..., {B(l−1)s||Ms}K(l−2)s ,

{Bx, Nx ∈ CP ∗
s }Ks(n+1) , α

rsSs(n+1) .

Mi updates the new group key K′
G, i ∈ [1, n + 1].

Fig. 6. Member join protocol.

α

= =
α α= =

=

∈
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=

α

Fig. 7. An example about member join process.

to use any secret key known by Mx right after Mx left the group and delete
all the peer-to-peer session keys shared with Mx. So fault-tolerance is most
important because the current member cannot use the old group key anymore.
Any delay caused by the disability of single current member (e.g., temporary
power failure, short-term drop line, out of hop range due to mobility, etc.) in
update the group key will slow down the group key update process. And this
causes group communications in trouble. Our member leave protocol solves this
problem by working with any available subgroup member without relying on a
particular one.

Suppose Ms is at level l. Ms first updates the key tree structure and its own
secret share and all the key pairs of its key-path. (Ms may be required to perform
a two-party authenticated key agreement protocol, if he is not an isolated leaf
node.) Then Ms divides the whole group into l − 1 subgroups according to its
co-path nodes following the same rule as in the member join protocol. At this
point, Ms checks whether he could reach all l−1 subgroups via the peer-to-peer
session keys he has. By reaching a subgroup, we mean the sponsor shares a peer-
to-peer session key with at least one subgroup member and thus can transmit
the keying information securely using the peer-to-peer session key. If so, Ms just
needs to encrypt the according keying information with the peer-to-peer session
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Member Leave Protocol :
Let Mx be the leaving member and Ms be the sponsor at level l. Let SE∗

s be the
set of members each from different subgroups, which share no session key with
Ms. Member nodes of KP ∗

i and CP ∗
i are denoted as {N1s, N2s, ..., N(l−1)s} and

{N1ŝ, N2ŝ, ..., N(l−1)ŝ}, respectively.
Round 1:

Ms multicasts SE∗
s : αrs ||Ms||Establish.

Round 2:

Each Mg ∈ SE∗
s unicasts to Ms: αrgSsg ||Mg ;

Ms computes: Ksg = αrsrg , Mg ∈ SE∗
s ; Ms updates all the key pairs of KP ∗

s .
Round 3:

Ms multicasts SE∗
s : {{BNis , Nis ∈ CP ∗

g }Ksg , Mg ∈ SE∗
s}

Round 4:
Each Mg ∈ SE∗

s multicasts own subgroup: {BNis , Nis ∈ CP ∗
g }KNiŝ

All members except for Mx can independently compute the updated group key.

Fig. 8. Member leave protocol.

key for each l − 1 subgroup member and multicasts them the updated keying
information. Upon receiving it, each l − 1 corresponding subgroup member can
obtain the necessary blinded key. Each of them then broadcasts this blinded
key to other subgroup members using the secret subgroup key. Otherwise, Ms

first needs to establish enough peer-to-peer session key with each of the l − 1
subgroups before transmitting the keying information. Note that any available
member could do this job without relying on a particular one, and therefore,
achieves fault-tolerance. Ms is determined by the following principles: Firstly,
Mx is not an isolated leaf node, then its sibling node must also be a leaf node.
In this case, Mx sibling will be chosen as Ms. Secondly, if Mx is an isolated leaf
node, Ms will be the shallowest leaf node in the subtree rooted in Mx’s sibling
node. If there is more than one node, then the leftmost isolated leaf node has
the priority; otherwise, choose the leftmost leaf node.

The protocol is depicted in Figure 8 using A-DH as the underlying two-party
protocol. Totally 4 rounds are needed to update the group key. And the two-
party protocol is required to execute 0 time at least and d − 1 times at the
worst case. The upper bound of multicast operations needed in the protocol
is d + 1. It was clear that the computation cost of the member leave process
depends on both the position (level) of the leaving member in the key tree and
the number of peer-to-peer session keys possessed by the sponsor Mx. Let NK

(0 ≤ NK ≤ d − 1) be the number of peer-to-peer session keys the sponsor has.
Then the two-party authenticated protocol needs to be executed l − NK − 1
times. Obviously, l −Nk − 1 varies from 0 to d− 1.

Two examples of member leave event are shown in Figure 9. In Figure 9(a),
member M5 leaves the group, so M1 is the sponsor for M5’s leave event. M1 com-
putes its new secret share B1 = h(K1) = h(αr1) with a fresh random nonce r1

and B136 = h(h(B1||B36)). Then, M1 multicasts {{B1||M1}K13 , {B136||M1}K12}
to M3 and M2. Upon receiving this message, M2 and M3 obtain B136 and
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Fig. 9. Two examples of member leave event.

B1, respectively. In turn, they each multicast it to their subgroup members:
M2 : {B136}K247 ; M3 : {B1}K36 . So, on decrypting the above message, all group
members get the required blinded key and thus can update the group key. In
Figure 9(b), M2 leaves the group, so the sponsor is M7. In this case, there ex-
ist two subgroups: (M1, M3, M5, M6) and (M4) from the view of M7. And M4

and M7 share no peer-to-peer session key with these two subgroups. So M7 first
multicasts to M1 and M4, two represents from each subgroup: αr4 to establish
two peer-to-peer session keys.

5 Complexity Analysis of EGAKA

We analyze the complexity of EGAKA by using A-DH as the underlying two-
party protocol in order to provide a clear comparison.

Table 1 compares key establishment protocol of EGAKA with many other
well known protocols. It is clearly that EGAKA and the protocol by Yang et
al. [29] both has the best performance. Only 5n − 4 exponentiations and d +
2 rounds (except for negotiation step) are needed by EGAKA-KE. Note that
protocol in [29] requires less exponentiations only because they use an ID-based
underlying two party protocol which takes 4 exponentiations per execution. And
this protocol is not verifiable contributory as pointed out before. Moreover, this
protocol provides no dynamic case and is mainly designed for static groups. On
the other hand, protocol by Bresson et al. [4] is provably secure against both
passive and active attacks, but obviously it is too computational intensive. (n2 +
4n)/2−1 exponentiations and n signatures are needed for the key establishment
protocol. At the same time, though protocol by Burmester et al. takes only two
rounds, it is very computational intensive. As pointed out before, both SA-GDH
and A-GDH are found to be flawed in [19].

The member join protocol of EGAKA-KU requires exactly two broadcast op-
erations, and the two-party authenticated key agreement protocol executes only
once. Communication rounds of member join protocol are usually 2 or 3 at the
worst case. What more important and promising is all these operations are inde-
pendent from the group size. This feature allows EGAKA-KU to provide highly
efficient member join service compared with other proposed protocols. Table 2
compares different key update protocols. It is clear that EGAKA provides most
efficient member join service. Only fixed 6 exponentiations are needed, which
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Table 1. Key establishment protocol comparison.

Group Key rounds total total exponentiations total
Establishment messages exponentiations per member sigs

EGAKA-KE using A-DH d + 2 2(n − 2) 5n − 4 [3, 2d + 1] -
A.GDH.2 [2] n n (n2 + 4n)/2 − 1 [3, 2n − 1] -
SA-GDH.2 [2] n n n2 n -
Yang et al. [29] d + 1 2(n − 2) 4n − 4 [2, 2d] -

Bresson et al. [4] n n (n2 + 4n)/2 − 1 [3, 2n − 1] n
Burmester et al.[7] 2 2n n(n + 1) n + 1 n

are constant to the group size. Comparing this result to that of TGDH using
Figure 11 (a) and (b) in [13], we can have a clearer idea about the superiority of
EGAKA in member join service. At the same time, the member leave protocol
of EGAKA-KU is less efficient, but the up-bound of the computational com-
plexity is still linear to d. Note that the group size is assumed to be less than
200, so d is less than 8. TGDH is relatively efficient in member leave process,
but TGDH provides no key establish protocol. The group key establishment is
not described in TGDH and thus the security issues of the protocol is not clear.
Again, protocol by Bresson et al. [4] is too computational intensive.

6 Security Analysis of EGAKA

We perform our security analysis in a computational complexity framework,
and full security analysis of EGAKA will be provided separately due to the
page limitation. Our attacker model distinguishes between passive and active
adversaries. Passive adversaries only eavesdrop on the group communication (in
particular they are never group members), whereas active adversaries may be
previous group members. We do not consider insider attacks as explained in
Section 3.

We assume that a passive attacker could eavesdrop all traffic. Therefore,
the attacker does not know any keying information in the key tree, because no
keying information is transmitted in the form of plaintext. Clearly, attacks to
find the group key can be reduced to the attempt of breaking the underlying
symmetric encryption algorithm. This can be viewed as an exhaustive key space
searching, provided the symmetric encryption algorithm is secure, which takes
O(2n) operations, where n is the bit-length of the group key. The passive attacker
can’t do better by using public peer-to-peer session key establish information,
because the underlying two-party protocol is assumed to be secure.

An active attacker’s knowledge in our model equals to that of any former
group member or their combination. We consider the following question: can an
active attacker with such knowledge derive any new group session keys? Clearly,
the active attacker can’t know the secret key share of at least one current group
member. This member is the one who updates its secret share after the latest
leaving member. So the active attacker could not know its secret share, under the
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Table 2. Key update protocol comparison.

Dynamic Case rounds total msgs total exps multicast sigs vers

EGAKA-KU using Join 2, 3 2 6 2 - -
A-DH Leave 4 [d, 2d] [0, 5d − 4] d - -

Bresson et al. [4] Join 2 2 2n 1 2 n + 1
Leave 1 1 2n 1 2 n − 2

TGDH [13] Join 2 3 3d/2 3 2 3
Leave 1 1 3d/2 1 1 1

Burmester et al.[7] Join 2 2n + 2 3 2n + 2 - -
Leave 2 2n − 2 3 2n − 2 - -

assumption of the security of the underlying symmetric encryption algorithm. So
the active attacker cannot know the secret key of this member’s key-path under
the assumption of the intractability of one way hash function. Another way for
an active attacker to compute the new group session keys is to pretend to be a
legal party of the current group and trying to establish a peer-to-peer session
key with the leave event sponsor and thus get the keying updating information
he wants. This is prohibited by the underlying two-party protocol. Therefore,
the active attacker cannot compute the group key except for brute force attack,
whose complexity is O(2n).

EGAKA provides verifiable contributory property. Every member in EGAKA
independently computes the group key from its own secret key share and the
blinded keys of its co-path nodes obtained from others. So if group members get
wrong blinded key from others, then no common group key can be obtained. In
other word, if only EGAKA is executed properly, then the resulting group key
is verifiable contributory.

7 Conclusion

In this paper, we proposed an efficient group authenticated key agreement pro-
tocol (EGAKA), which is designed to be fully distributed, provides efficient
dynamic group membership management, mutual authentication among group
members and is secure against both passive and active attacks. EGAKA distin-
guishes itself from other existing protocols as follows: Firstly, EGAKA provides
an efficient contributory key agreement framework which accommodates any two
party authenticated key exchange protocol. EGAKA can be built on any two-
party protocol without relying on a particular one. Therefore, EGAKA achieves
scalability and robustness in heterogenous environments by allowing members to
use any available two-party protocol in common and deliberately designed fault-
tolerant mechanism in dynamic membership management. Secondly, EGAKA is
superior to many protocols in the literature in terms of efficiency. In particular,
EGAKA provides extremely efficient member join services. Both communica-
tion and computation costs are constant to the group size. This property is very
useful in the scenarios with frequent member addition.
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Appendix: Protocol of EGAKA-KE Phase I Using A-DH

By using A-DH as the underlying two-party protocol, we depict EGAKA-KE
Phase I as below.

Protocol EGAKA-KE Phase I :
Let {M1, · · · , Mn} be a set of members wishing to establish a group key KG. Let Ei

be the set of group members that are the partners of Mi.
Round 1

Mi, i ∈ [1, n] −→ {Mj |Mj ∈ Ei, j > i}: αri .
Round 2

Mi, i ∈ [1, n] −→ {Mj |Mj ∈ Ei, j < i}: αriSij .
The resulting peer-to-peer session key is

Kij = αrirj .

Fig. 10. Protocol EGAKA-KE Phase I using A-DH.
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Abstract. The bilinear pairings such as Weil pairing or Tate pairing
over elliptic curves and hyperelliptic curves have been found various ap-
plications in cryptography very recently. Ring signature is a very useful
tool to provide the user’s anonymity and the signer’s privacy. In this pa-
per, we propose a ring signature scheme based on the bilinear pairings,
which is secure against chosen message attacks without random oracles.
Moreover, we use this ring signature scheme to construct a concurrent
signature scheme for fair exchange of signatures.

1 Introduction

Group-oriented cryptography deals with those situations in which a secret task
(signing or decrypting) is performed by a group of entities or on behalf of such a
group. Threshold cryptography is an approach to this situation. In a threshold
scheme, some participants have shares of the unique secret key of the group.
Participation of some determined subset of players is required to perform the
corresponding secret task in a correct way.

Two related but different approaches are ring signatures and group signa-
tures. In a ring signature scheme, an entity signs a message on behalf of a set (or
ring) of members that includes himself. The verifier of the signature is convinced
that it was produced by some member of the ring, but he does not obtain any
information about which member of the ring actually signed. The real signer in-
cludes in the signature the identities of the members of the ring that he chooses,
depending on his purposes, and probably without their consent.

The idea behind group signature schemes is very similar to that of ring
signatures, but with some variations. First of all, there exists a group manager
in charge of the join and revocation of the members in the group. Therefore, a
user cannot modify the composition of the group. And second, some mechanisms
are added in order to allow (only) the group manager to recover the real identity
of the signer of a message, for example in the case of a legal dispute.

Ring signatures are a useful tool to provide anonymity in some scenarios. For
example, if a member of a group wants to leak to the media a secret information
about the group, he can sign this information using a ring scheme and convince

C.H. Lim and M. Yung (Eds.): WISA 2004, LNCS 3325, pp. 160–170, 2004.
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everyone that the information indeed comes from the group itself, without being
accused of leaking the secret; or if a union could set up such a scheme for all
workers of some company which then can leak information that provably come
from this company (and thus know the working conditions), without revealing
who complained.

A different application is the following: By using ring signature scheme, we
can turn standard signature schemes into designated verifier signature schemes.
If the signer A of a message wants that the authorship of the signature could
be entirely verified only by some specific user B, he can sign the message with
respect of the ring {A, B}. The rest of users could not know who between A and
B is the actual author of the signature, but B will be convinced that the author
is A.

In [1], Rivest, Shamir and Tauman formalize the concept of ring signature
schemes, and propose a ring signature scheme which is proved to be existentially
unforgeable under adaptive chosen-message attacks, in the ideal cipher model,
assuming the hardness of the RSA problem. This scheme also uses a symmetric
encryption scheme and the notion of combining function.

Bresson, Stern and Szydlo show in [2] that the scheme of [1] can be modified
in such a way that the new scheme is proved to achieve the same level of security,
but under the strictly weaker assumption of the random oracle model.

In [3], Abe, Ohkubo and Suzuki give general constructions of ring signature
schemes for a variety of scenarios, including those where signature schemes are
based on one-way functions, and those where signature schemes are of the three-
move-type (for example, Schonrr’s signature scheme).

Some security results for generic ring signature schemes, as well as a new
specific scheme based on Schnorr’s signature scheme, are given by Herranz and
Saez in [4].

Recently, Dodis, Kiayias, Nicolosi and Shoup propose constant-size ring sig-
natures using the Fiat-Shamir transform in [5]. This is the first such constant-size
scheme, as all the previous proposals had signature size proportional to the size
of the ring.

The bilinear pairings, namely the Weil-pairing and the Tate-pairing of alge-
braic curves, are important tools for research on algebraic geometry. They have
been found various applications in cryptography recently [6],[7],[8],[9],[10].

In [10], Boneh and Boyen propose a short signature scheme which is exis-
tentially unforgeable under chosen message attacks without the random oracles.
Based on this short signature scheme, we present a new ring signature scheme us-
ing the bilinear pairings, which is the first ring signature scheme secure without
random oracle.

The problem of fair exchange of signatures is a fundamental and well-studied
problem in cryptography, with potential application in a wide range of scenarios
in which the parties involved are mutually distrustful. Ideally, we would like the
exchange of signatures to be done in a fair way, so that by engaging in a protocol,
either each party obtains the other’s signature, or neither party does. It should
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not be possible for one party to terminate the protocol at some stage leaving the
other party committed when they themselves are not.

For fair exchange of signatures, Chen etc. [11] introduce a new concept of
concurrent signatures. These allow two entities to produce two signatures in
such a way that, from the point of view of any third party, both signatures are
ambiguous with respect to the identity of the signing party until an extra piece
of information (the keystone) is released by one of the parties. Upon release of
the keystone, both signatures become binding to their true signers concurrently.
Using our ring signature scheme, we construct a concurrent signature scheme
based on the bilinear maps.

The rest of the paper is organized as follows. In Section 2 we formally state
our definition of security as well as basic tools used in our scheme. In Sections 3
and 4, we present a ring signature scheme and analyze its security and perfor-
mance, respectively. In Section 5, a concurrent signature scheme based on our
ring signature is constructed. And we end with concluding remarks in Section 6.

2 Definitions

2.1 The Bilinear Pairing

Let G be a cyclic additive group generated by P , whose order is a prime q, and
V be a cyclic multiplicative group of the same order. Let e : G × G → V be a
pairing which satisfies the following conditions:

1. Bilinearity: For any P, Q, R ∈ G, we have e(P +Q, R) = e(P, R)e(Q, R) and
e(P, Q + R) = e(P, Q)e(P, R). In particular, for any a, b ∈ Zq,

e(aP, bP ) = e(P, P )ab = e(P, abP ) = e(abP, P ).

2. Non-degeneracy: There exists P, Q ∈ G, such that e(P, Q) = 1.

3. Computability: There is an efficient algorithm to compute e(P, Q) for all
P, Q ∈ G.

The typical way of obtaining such pairings is by deriving them from the Weil-
pairing or the Tate-pairing on an elliptic curve over a finite field. The interested
reader is referred to [12] for a complete bibliography of cryptographic works
based on pairings.

2.2 Ring Signature

The idea of a ring signature is the following: a user wants to compute a signature
on a message, on behalf of a set (or ring) of users which includes himself. He
wants the verifier of the signature to be convinced that the signer of the message
is in effect some of the members of this ring. But he wants to remain completely
anonymous. That is, nobody will know which member of the ring is the actual
author of the signature.
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A regular operation of a ring signature scheme consists of the execution of
the two following algorithms:

Ring-Sign: If a user At(1 ≤ t ≤ n) wants to compute a ring signature on behalf
of a ring A1, A2, · · · , An, he executes this probabilistic algorithm with input a
message m, the public keys pk1, pk2, · · · , pkn of the ring and his secret key skt.
The output of this algorithm is a ring signature σ for the message m.

Ring-Verify: This is a deterministic algorithm that takes as input a message
m and a ring signature σ, that includes the public keys of all the members of
the corresponding ring, and outputs “accept” if the ring signature is valid, or
“reject” otherwise.

The resulting ring signature scheme must satisfy the following properties:

Correctness: A ring signature generated in a correct way must be accepted by
any verifier with overwhelming probability.

Anonymity: Any verifier should not have probability greater than 1/n to guess
the identity of the real signer who has computed a ring signature on behalf of
a ring of n members. If the verifier is a member of the ring distinct from the
actual signer, then his probability to guess the identity of the real signer should
not be greater than 1/(n− 1).

Unforgeability: Among all the proposed definitions of unforgeability (see [13]),
we consider the strongest one: any attacker must not have non-negligible prob-
ability of success in forging a valid ring signature for some message m on behalf
of a ring that does not contain himself, even if he knows valid ring signatures
for messages, different from m, that he can adaptively choose.

2.3 Concurrent Signature

We will refer to any two-party signature with the property that it could have
been produced by either of the two parties as an ambiguous signature. We briefly
explain how a concurrent signature protocol can be built using ambiguous sig-
natures.

Since either of two parties could have produced such an ambiguous signature,
both parties can deny having produced it. However, we note that if A creates
an ambiguous signature which only either A or B could have created, and sends
this to B, then B is convinced of the authorship of the signature (since he knows
that he did not create it himself). However B cannot prove this to a third party.
The same situation applies when the roles of A and B are reversed.

Suppose now that the ambiguous signature scheme has the property that,
when A computes an ambiguous signature, she must choose some random bits
hB to combine with B’s public key, but that the signing process is otherwise
deterministic. Likewise, suppose the same is true for B with random bits hA

(when the roles of A and B are interchanged). Suppose A creates an ambiguous
signature σA on MA using bits hB that are derived by applying a hash function
to a string k that is secret to A; hB is then a commitment to k. B can verify
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that A created the signature σA but not demonstrate this to a third party. Now
B can create an ambiguous signature σB on MB using as its input hA the same
hB that A used. Again, A can verify that B is the signer. As long as k remains
secret, neither party can demonstrate authorship to a third party.

But now if A publishes the keystone k, then any third party can be convinced
of the authorship of both signatures. The reason for this is that the only way that
B could produce σB is by following his signing algorithm, choosing randomness
hA and deterministically producing σB . The existence of a pre-image k of B’s
randomness hA determines B as being the only party who could have conducted
the signature generation process to produce σB . The same holds true for A and
σA. Thus the pairs < k, σA > and < k, σB > amount to a simultaneously binding
pair of signatures on A and B’s messages. These pairs are called concurrent
signatures [11].

The resulting concurrent signature scheme must satisfy the following security
properties:

Correctness: A concurrent signature generated in a correct way must be ac-
cepted by any verifier with overwhelming probability.

Unforgeability: For concurrent signatures, the definition of existential unforge-
ability against chosen message attacks of [13] should be extended to the multi-
party setting. The extension is similar to that of [14] and is strong enough to
capture an adversary who can simulate and observe concurrent signature proto-
col runs between any pair of participants.

Ambiguity: Either of two parties could have produced such an signature, both
parties can deny having produced it.

Fairness: From the point of view of any third party, both signatures are am-
biguous with respect to the identity of the signing party until the keystone is
released by one of the parties. Upon release of the keystone, both signature
become binding to their true signers concurrently.

Formal definition of concurrent signature and concurrent signature protocol
is referred to [11].

3 Our Ring Signature Scheme

The ring signature scheme comprises three algorithms: Key Generation, Ring
Signing, and Ring Verification. Recall that G is a cyclic additive group gen-
erated by P , whose order is a prime p, and e : G×G→ V is a bilinear map.

Key Generation. For a particular user, pick xs, ys ∈ Z∗
p at random, and com-

pute us = xsP , vs = ysP . The user’s public key is (us, vs). The corresponding
secret key is (xs, ys).

Ring Signing. Given public keys (u1, v1), (u2, v2), · · · , (un, vn), a message
m ∈ Z∗

p, and a private key (xs, ys) corresponding to one of the public keys
(us, vs) for some s, choose r ∈ Z∗

p and ai ∈ Z∗
p at random for all i = s. Compute
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σs =
1

m + xs + ysr

(
P −

∑
i�=s

ai(mP + ui + rvi)
)

.

In the unlikely event that m+xs +ysr = 0, we try again with a different random
number r ∈ Z∗

p. For all i = s, let σi = aiP . Output the ring signature

σ = (σ1, σ2, · · · , σn, r).

Ring Verification. Given public keys (u1, v1), (u2, v2), · · · , (un, vn), a message
m ∈ Z∗

p, and a ring signature σ = (σ1, σ2, · · · , σn, r), verify that
n∏

i=1

e(mP + ui + rvi, σi) = e(P, P ). (1)

4 Analysis of Our Scheme

There are three properties for the security analysis of a ring signature one must
consider: correctness, anonymity and unforgeability.
Correctness. The signature scheme is correct because of the following.

n∏
i=1

e(mP + ui + rvi, σi)

=
∏
i�=s

e(mP + ui + rvi, σi)e(mP + us + rvs, σs)

=
∏
i�=s

e(mP + ui + rvi, σi)

×e

(
mP + us + rvs,

1
m + xs + ysr

(
P −

∑
i�=s

ai(mP + ui + rvi)
))

= e(P, P ).

Anonymity. We show by the following theorem that the identity of the signer
is unconditionally protected.
Theorem 4.1. For any algorithm A, any set of users U , and a random u ∈ U ,
the probability Pr[A(σ) = u] is at most 1

|U| , where σ is a ring signature on U

generated with private key sku.
Proof. Assume that σ = (σ1, σ2, · · · , σn, r) is a ring signature on the set of
users U generated with private key sku. All σi except σu are taken randomly
from G due to σi = aiP and ai ∈R Z∗

p, while σu is computed by these ai, m
and sku. Therefore, for any fixed U and m, (σ1, σ2, · · · , σn) has |U |n−1 possible
values, all of which can be chosen by the signature generation procedure with
equal probability and regardless of the signer. At the same time, the distribution
(σ1, σ2, · · · , σn) is identical to the distribution{

(a1P, a2P, · · · , anP ) :
n∑

i=1

aiP = C

}
,

here C is an element of G depend on U and m. So the conclusion is correct. �
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Unforgeability. It can be easily seen that, for n = 1, our ring signature is
actually the short signature scheme proposed by D.Boneh [10], which is exis-
tentially unforgeable under the chosen message attacks without random oracles.
The unforgeability of our ring signature can be shown by the similar method as
[10].

Our ring signature scheme can be performed with supersingular elliptic curves
or hyperelliptic curves. The essential operation in our signature schemes is to
compute bilinear pairings, which can be efficiently computed due to [15] and
[16].

There are n + 1 pairing operations in the verification algorithm. However,
from (1) we see that n of these pairing operations can be executed in parallel,
which is quit different from the sequential operation in Rivest’s scheme [1]. Note
that the e(P, P ) operation only need to be computed at initialization and its
value can be cached. Hence the verification operation can be implemented in
parallel and the running time is comparable to one pairing operation.

5 Concurrent Signature Scheme

We present a concrete concurrent signature scheme in this section, which is
directly derived from our ring signature scheme.

5.1 Concurrent Signature Algorithm

The four algorithms (setup, asign, averify, verify) of our concurrent signa-
ture scheme are as follows:

SETUP. Let G be a cyclic additive group generated by P , whose order is a
prime p, and e : G×G→ V be a bilinear map. The keystone space K = {0, 1}∗,
the keystone fix space F = Z∗

p. Two cryptographic hash functions H1, H2 :
{0, 1}∗ → Z∗

p are selected. Define kgen: K → F to be H1. For all 1 ≤ i ≤ n,
private keys xi, yi are chosen uniformly at random from Z∗

p. The corresponding
public keys are computed as Ui = xiP, Vi = yiP and are made public.

ASIGN. The algorithm asign takes as input 〈Ui, Vi, Uj , Vj , xi, yi, h2, m〉, where
i = j, and (Ui, Vi), (Uj , Vj) are public keys, (xi, yi) is the private key correspond-
ing to (Ui, Vi), h2 ∈ F and m is a message. The algorithm picks a ∈ Z∗

p, r ∈ Z∗
p

at random and then computes:

h1 = H2(h2‖Uj‖Vj‖m)

s1 =
1

m + xi + yir

(
h−1

1 P − a (mP + Uj + rVj)
)

s2 = ah−1
2 h1P

Here “‖” denotes concatenation. The algorithm outputs an ambiguous signature

σ = 〈s1, s2, r, h1, h2〉.
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AVERIFY. The algorithm averify takes as input 〈σ, Ui, Vi, Uj , Vj , m〉, where
σ = 〈s1, s2, r, h1, h2〉 is an ambiguous signature with h1, h2 ∈ F , and (Ui, Vi) and
(Uj , Vj) are public keys, m is a message. The algorithm checks that the following
equation:

2∏
i=1

e

(
hi (mP + Ui + rVi) , si

)
= e(P, P )

and outputs accept if it holds. Otherwise, it outputs reject. The correctness of
averify can be easily seen from (1).

VERIFY. This is an algorithm which takes as input 〈k, S〉, where k ∈ K is a key-
stone and S is of the form S = 〈σ, Ui, Vi, Uj, Vj , m〉, where σ = 〈s1, s2, r, h1, h2〉
is an ambiguous signature with h1, h2 ∈ F , and (Ui, Vi) and (Uj, Vj) are public
keys, m is a message. The algorithm checks if kgen(k) = h2. If not, it terminates
with output reject. Otherwise it runs averify(S).

5.2 Concurrent Signature Protocol

We will describe a concurrent signature protocol between two parties A and
B (or Alice and Bob). Since one party needs to create the keystone and send
the first ambiguous signature, we call this party the initial signer. A party who
responds to this initial signature by creating another ambiguous signature with
the same keystone fix is called a matching signer. Without loss of generality,
we assume A is the initial signer, and B is the matching signer. The signature
protocol works as follows:

A and B run setup to determine the public parameters of the scheme. We
assume that A’s public keys and private keys are (UA, VA) and (xA, yA) respec-
tively, and B’s public keys and private keys are (UB, VB) and (xB , yB).

1. A picks a random keystone k ∈ K, and computes f =kgen(k). A takes
her own public key (UA, VA) and B’s public key (UB, VB) and picks a mes-
sage mA to sign. A then computes her ambiguous signature to be σA = asign

(UA, VA, UB, VB , xA, yA, f, mA), and sends it to B.

2. Upon receiving A’s ambiguous signature σA, B verifies the signature by check-
ing that averify(σA, UA, VA, UB, VB , mA) = accept. If not B aborts, otherwise
B picks a message mB to sign and computes his ambiguous signature σB =
asign(UA, VA, UB, VB , xB, yB, f, mB) and sends this back to A. Note that B
uses the same value f in his signature as A did to produce σA.

3. Upon receiving B’s signature σB , A verifies its correctness by checking that
averify(σB, UA, VA, UB, VB, mB)=accept, where f is the same keystone as A
used in Step 1. If not, A aborts, otherwise A sends keystone k to B.

Note that inputs 〈k, SA〉 and 〈k, SB〉 will now both be accepted by verify,
where SA = 〈σA, UA, VA, UB, VB , mA〉 and SB = 〈σB , UA, VA, UB, VB, mB〉.

5.3 Security Analysis

Now we analyze the security of the concurrent signature scheme.
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Unforgeability: Since the concurrent signature scheme is based on the signa-
ture scheme proposed by D.Boneh [10] which is existentially unforgeable under
a chosen message attacks, it is also unforgeable.

Ambiguity: The concurrent signature scheme is a direct modification of our
ring signature scheme, hence it is ambiguous in the random oracle model.

Fairness: The concurrent signature scheme is fair in the random oracle.

Proof : Since H1 is a random oracle, the adversary A’s probability of producing
k such that f = H1(k) is negligible. Furthermore, suppose SA is accepted by
averify and 〈k, SA〉 is accepted by verify, we must have kgen(k) = f . Since
SA and SB share the value f , we must also have that 〈k, SB〉 is accepted by
verify. The detailed proof is similar to [11]. �

So our concurrent signature scheme is secure in the random oracle.

6 Conclusion

In this paper we presented a new ring signature scheme using the bilinear pairings
which is the first ring signature scheme secure against chosen message attacks
without random oracle. Furthermore, we proposed a concurrent signature scheme
based on this ring signature, which can be used for fair exchange of signatures.
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Abstract. Pairing-based cryptography is rapidly emerging in recent years. Many
cryptographic protocols, such as signcryption, threshold decryption and undeni-
able signature enabled by pairing require sending the result of the pairing function
with private key as one of the input. Since private key is only known to its owner,
the correctness of the result may not be easily verifiable (which requires solv-
ing the decisional bilinear Diffie-Hellman problem). In this paper, we introduce
the notion of Verifiable Pairing, together with a concrete construction, to ensure
the robustness of these protocols. Verifiable pairing is a useful primitive in many
information security applications. As examples, we show how verifiable pairing
can be applied in signcryption, threshold decryption and how it can help in fixing
insecure protocol. In adding verifiability to threshold decryption, our solution is
more efficient than the previous proposal in [21]. As a bonus result, we find that
our scheme for verifiable pairing gives rise to a new identity-based signature that
is provably secure in the random oracle model without using the forking lemma,
assuming the hardness of the computational bilinear Diffie-Hellman problem.

Keywords: Bilinear pairing, verifiable pairing, ID-based cryptography, ID-based
signature, exact security, cryptographic primitives, cryptographic protocols, sign-
cryption, threshold decryption, undeniable signature

1 Introduction

Bilinear pairing (see [4] for implementation details) is a cryptographic primitive that
is recently applied extensively in cryptography. It gives rise to many cryptographic
schemes that are yet to be (efficiently) constructed using other cryptographic primi-
tives, e.g. aggregate signature [5], short signature [6] and short group signature [3].
One of the most distinguishing cryptographic schemes enabled by bilinear pairing is
identity based (ID-based) encryption [4], which solves the open problem proposed by
[27] in 1984. After this seminal work, a lot of other ID-based cryptographic schemes
are proposed, including provably secure signature [7, 24], hierarchical encryption and
signature [11, 17], blind signature [12, 28], signcryption [13, 22], threshold decryption
and signature [10, 21], undeniable signature [18, 23], etc.

Many cryptographic protocols constructed from pairing, such as signcryption,
threshold decryption and undeniable signature, require sending the result of the pair-
ing function with private key as one of the input. Since private key is only known
to its owner, it may not be possible that the correctness of the result can be verified
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(which requires solving the decisional bilinear Diffie-Hellman problem). In this paper,
we introduce the notion of Verifiable Pairing with a concrete construction to ensure
the robustness of these protocols. We also show the completeness and soundness of
our scheme. As examples of application, we propose how verifiable pairing helps in
ensuring the non-repudiation property of signcryption, adding robustness to threshold
decryption and fixing an insecure undeniable signature. Besides, our solution is more
efficient than the previous mechanism that ensures robustness in threshold decryption
[21].

Interestingly, we find that the verifiability of our proposed solution can help in mak-
ing a new ID-based signature scheme from bilinear pairings that is provable secure in
the random oracle model [2] without using the forking lemma [26]. This open question
has remained unsolved for a few years until the recent work in [24]. As far as we know,
our scheme is the second such scheme.

The rest of the paper is organized as follows. In Section 2, we review the properties
of bilinear pairings and the related complexity assumptions. We introduce the notion
of verifiable pairing in Section 3, together with a concrete construction and its security
analysis. Section 4 shows how verifiable pairing adds robustness to threshold decryption
schemes and how our solution outperforms the existing proposal in [21]. Section 5
presents a new provably secure ID-based signature scheme without using the forking
lemma. In Section 6, we show that verifiable pairing is indeed essential in ensuring the
non-repudiation property of the ID-based signcryption proposal by [22]. We then show
how verifiable pairing plays its role in fixing insecure protocol like [18] in Section 7.
Finally we conclude our paper in Section 8.

2 Preliminaries

2.1 Bilinear Pairings and Related Complexity Assumptions

Let (G1, +) and (G2, ·) be two cyclic groups of prime order q. The bilinear pairing is
given as ê : G1 ×G1 → G2, which satisfies the following properties:

1. Bilinearity: ∀ P, Q, R ∈ G1, ê(P + Q, R) = ê(P, R)ê(Q, R), and ê(P, Q + R) =
ê(P, Q)ê(P, R).

2. Non-degeneracy: There exists P, Q ∈ G1 such that ê(P, Q) = 1.
3. Computability: There exists an efficient algorithm to compute ê(P, Q) ∀P, Q ∈ G1.

Definition 1. Given a generator P of a group G and a 3-tuple (aP, bP, cP ), the Deci-
sional Diffie-Hellman problem (DDH problem) is to decide whether c = ab.

Definition 2. Given a generator P of a group G and a 2-tuple (aP, bP ), the Computa-
tional Diffie-Hellman problem (CDH problem) is to compute abP .

Definition 3. If G is a group such that DDH problem can be solved in polynomial
time, but no probabilistic algorithm can solve the CDH problem with non-negligible
advantage within polynomial time, then we call G a Gap Diffie-Hellman (GDH) group.

Definition 4. Given a generator P of a group G, and a 3-tuple (aP, bP, cP ) ∈ G
3
1,

the Computational Bilinear Diffie-Hellman problem (CBDH problem) is to compute
τ = ê(P, P )abc.
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Weil pairing [4] and Tate pairing [16] are two admissible bilinear pairings ê : G1 ×
G1 → G2 that one can use them to solve the DDH problem in polynomial time but the
CDH problem remains difficult (i.e. G1 is a GDH group).

3 Verifiable Pairing

3.1 Overview

Verifiable Pairing aims at solving the following problem: Given a generator P of a
group G and a 4-tuple (aP, bP, abP, cP ) ∈ G4

1, one can enable another party, who only
knows the value of aP , bP and cP , to compute ê(P, P )abc but not ê(abP, R) for any
arbitrary R ∈ G1, i.e. helping other to solve one instance of the CBDH problem without
leaking abP . Notice that a, b and c are unknown to both parties.

The significance of the verifiable pairing comes from the fact that there are many
ID-based schemes (e.g. [7, 17, 22–24, 28]) sharing the same private key extraction algo-
rithm as that of [4]:

Extract:
Let H1(·) be a cryptographic hash function where H1 : {0, 1}∗ → G1. The user with
identity ID ∈ {0, 1}∗ submits ID to the private key generator (PKG). the PKG sets
the user’s public key QID to be H1(ID) ∈ G1, computes the user’s private key SID by
SID = sQID, where s ∈ F∗

q is the master secret key of the PKG. Then PKG sends the
private key to the user in a secure channel.

Treating a as the master secret key s, bP as the public key QID of the user ID, and
cP as a certain part of the messages in an ID-based scheme (e.g. signature, encrypted
message), verifiable pairing helps the holder of the private key SID to convince other
the correctness of ê(SID, cP ) without leaking the private key.

3.2 Proposed Construction

Define G1, G2 and ê(·, ·) as in previous section. Suppose Alice holds the value of abP ,
and she wants to let Bob to compute ê(abP, cP ) without leaking abP . She proceeds as
follows.

1. Randomly choose z from F∗
q .

2. Compute z−1 (Both z and z−1 are kept in secret).
3. Compute T = z−1(cP ).
4. Compute U = z(bP ).
5. Compute V = z(abP ).
6. Send (T, U, V ) to Bob (It is assumed Bob knows the value of P , aP , bP and cP

already.)

After receiving (T, U, V ) from Alice, Bob performs the following to compute the
value of ê(P, P )abc.

1. Check whether ê(V, P ) = ê(U, aP ).
2. Check whether ê(U, T ) = ê(bP, cP ).
3. If both of the equalities hold, Bob can compute the value of ê(P, P )abc by ê(V, T );

otherwise, Bob knows that Alice is intended to cheat him.



Verifiable Pairing and Its Applications 173

3.3 Completeness and Soundness

It is easy to see the completeness of the scheme. For soundness, ê(V, P ) = ê(U, aP )
implies ê(V, P ) = ê(aU, P ). From the non-degeneracy of bilinear pairing, we know
that V = aU . Assume T = d(cP ), where d ∈ F∗

q , from ê(U, T ) = ê(bP, cP ), we
know that ê(dU, cP ) = ê(bP, cP ), which implies U = d−1(bP ). Finally, ê(V, T ) =
ê(aU, d(cP )) = ê(d−1(abP ), d(cP )) = ê(P, P )abc. Moreover, obtaining abP from
(T, U, V ) is difficult as it involves solving the discrete logarithm problem. We defer our
efficiency analysis to Section 4 and we show a more formal analysis in Section 5.

3.4 A More Efficient Construction

From the bilinearity of bilinear pairing, it seems possible to save another pairing com-
putation by aggregating the step 1 and step 2 of the verification process, for example,
by checking whether ê(U, aP +T ) = ê(bP, cP )ê(V, P ). However, this “batch verifica-
tion” makes the scheme insecure. After the above change, it is possible for the adversary
to construct special values of T ′, U ′ and V ′ in a way different from our proposed con-
struction, yet (T ′, U ′, V ′) can still pass the verification process.

The above class of attack is possible only when the adversary can manipulate the
values of T and U and V according to the some pre-defined equation like ê(U, aP +
T ) = ê(bP, cP )ê(V, P ). To remove this vulnerability, we can borrow the idea of Fiat-
Shamir heuristic [15]. The new verification process is to check whether ê(U, aP +
xT ) = ê(bP, x(cP ))ê(V, P ), where x ∈ F

∗
q . Since the adversary does not know the

value of x before the tuple (T, U, V ) is sent, he/she has no idea in how to manipulate
their values to satisfy the unknown verification equation. The probability of cheating is
greatly reduced by this technique1.

4 ID-Based Threshold Decryption

4.1 Overview

One of the motivations of threshold decryption schemes is to decentralize the decryp-
tion power. Threshold decryption schemes also address the problem of unavailability,
in which any t out of n (t < n) entities can together decrypt a given ciphertext. ID-
based threshold decryption is more useful than traditional threshold decryption since
the identity can be the name of the group sharing a decryption key. Other informa-
tion security applications of ID-based threshold decryption include mediated ID-based
encryption scheme [21]. We first review Libert and Quisquater’s threshold decryption
scheme [21], and their scheme’s robustness feature, then we compare their construction
with ours.

4.2 Libert and Quisquater’s Scheme

Let H1 and H2 be two cryptographic hash functions where H1 : {0, 1}∗ → G∗
1, H2 :

G2 → {0, 1}n. The following shows the details of the scheme.

1 An anonymous reviewer suggested this approach.
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– Setup: Let P be an arbitrary generator of G1. The PKG chooses s ∈ F∗
q randomly

and sets Ppub = sP . The master secret key is s, which is kept secret and known
by the PKG only. Then it picks a1, · · · , at−1 ∈R F∗

q and constructs a polynomial
f(x) = s + a1x + · · ·+ at−1x

t−1 of degree t − 1. For i = 1, · · · , n, it computes

P
(i)
pub = f(i)P. The system parameters are

{G1, G2, q, n, P, P
(1)
pub, · · · , P

(n)
pub, Ppub, ê(·, ·), H1(·), H2(·)}.

– Extract: It is the threshold extension of the private key extraction algorithm de-
fined in Section 3.2. Given an identity ID ∈ {0, 1}∗, the PKG sets the public key

QID to be H1(ID) ∈ G1. For i = 1, · · · , n, it computes the user’s private key S
(i)
ID

by S
(i)
ID = f(i)QID. Then the PKG sends one share of the private key S

(i)
ID to the

user i in a secure channel.
– Encrypt: To encrypt a plaintext m to user ID,

1. Compute QID = H1(ID),
2. Pick a random r ∈ F∗

q , (the random short term private key)
3. Compute g = ê(Ppub, QID),
4. Set the ciphertext to C =< rP, m ⊕ H2(gr) >. (gr can be viewed as the

session key)
– Decrypt: Given a ciphertext < U, V > and a private key share S

(i)
ID, player i

computes g(i) = ê(U, S
(i)
ID).

– Recombine: After the recombiner receives t valid shares g(i) = ê(U, S
(i)
ID) from

a certain subset of size t of the user group {1, · · · , n}, the recombination goes as
follows.
1. Compute g =

∏
i∈S g(i)Li , where Li denotes the i-th Lagrange coefficient.

2. Recover m = V ⊕H2(g),

4.3 Robustness Feature Provided by Libert and Quisquater’s Scheme

Even if the recombiner gets only one corrupted or inconsistent share, the decryption
fails since t − 1 entities cannot recover the encrypted text in a threshold decryption
scheme. To add robustness feature to threshold decryption, we need a mechanism to
check the validity of a share. Below shows the procedure proposed in [21], with the
help of an extra hash function H3 : G4

2 → F∗
q .

Each participating player i, after having computed g(i) = ê(U, S
(i)
ID), does the fol-

lowing.

1. Pick R ∈R G1.
2. Compute w1 = ê(P, R).
3. Compute w2 = ê(U, R).
4. Compute h = H3(g(i), ê(Ppub, QID), w1, w2).
5. Compute V = R + hS

(i)
ID.

6. Send (w1, w2, V ) to the recombiner.
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Then the recombiner verifies the shares by following the below procedure.

1. Compute h = H3(g(i), ê(Ppub, QID), w1, w2).
2. Check whether ê(P, V ) = w1ê(P

(i)
pub, QID)h.

3. Check whether ê(U, V ) = w2g
(i)h

.

4.4 Comparison with Our Verifiable Pairing

To compare these two pieces of work, we consider operations including point addition
in G1 (G1 Add), point scalar multiplication in G1 (G1 Mul), exponentiation in Fq (Fq

Exp), division in Fq (Fq Div), hashing (Hash) and pairing operation (Pairing).
By using the above procedures proposed by [21], to convince another party, one

needs to perform 3 pairing operations, 1 point addition and 1 point scalar multiplication,
while the verifier needs to compute 4 pairing operations and 2 exponentiations in G2.
Compared with our verifiable pairing, our solution is more efficient in the number of
pairing operations needed (see Table 1, we call the party who needs to convince another
the initiator).

Although some researches have been done in analyzing the complexity and speed-
ing up the pairing computation (for example, [1, 16, 19, 9]), pairing operations are still
rather expensive. Moreover, the inefficiency of [21] magnifies in the situation of thresh-
old decryption since there are t parties to convince the recombiner. It gives the motiva-
tion for us to remove all the pairing computations of the initiator side. For the verifier
side, our basic construction only requires one more pairing computation and the variant
of our basic construction is as efficient as the construction in [21].

5 A New ID-Based Signature with Exact Security

5.1 Overview

The use of the forking lemma [26] to prove the unforgeability of signature schemes
is very popular in recent years. However, application of the forking lemma does not

Table 1. Efficiency of our proposed constructions.

Efficiency

Entities G1 Add G1 Mul Fq Exp Fq Div Hash Pairing

Previous Construction in [21]

Initiator 1 1 0 0 1 3

V erifier 0 0 2 0 1 4

Verifiable Pairing (Basic Construction)

Initiator 0 3 0 1 0 0

V erifier 0 0 0 0 0 5

Verifiable Pairing (More Efficient Version)

Initiator 0 3 0 1 0 0

V erifier 0 2 0 0 0 4
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yield tight security reductions. To the best of our knowledge, there is only one ID-
based signature (IBS) [24]that is provably secure without using the forking lemma (and
hence has a tight security reduction). In this section, we show how to spawn another
ID-based signature scheme with a good exact security from our verifiable pairing. Our
construction requires a source of randomness but we do not require the oracle replay
method and the forking lemma in the security proof.

5.2 Security Notion of ID-Based Signature

We consider the notion of existential forgery for adaptive chosen-message-and-identity
attack (EF-CMIA) [7]. Its formal definition is based on the following EF-CMIA game.

Definition 5. The existential forgery for adaptive chosen-message-and-identity attack
game played between a challenger C and an adversary A is defined as follows.

Setup:
The challenger C takes a security parameter k and runs Setup to generate the common
public parameters param and the master secret key s. C sends param toA. The master
secret key s will be kept by C.

Attack:
The adversaryA can perform a polynomially bounded number of queries in an adaptive
manner (that is, each query may depend on the responses to the previous queries). The
types of queries allowed are described below.

– Any hashing query necessary for normal execution of the scheme.
– Extract: A chooses an identity ID. C computes Extract(ID) = SID and

sends the result to A.
– Sign: A chooses an identity ID, and a plaintext m. C signs the plaintext by com-

puting σ = Sign(m, SID) and sends σ to A.

Forgery:
After the Attack phase, the adversary A outputs (σ, m∗, ID∗) where ID∗ does not
appear in any Extract query and the Sign query on (m∗, ID∗) does not appear in
the Attack phase too.

The adversary A wins the game if the response of the Verify on (σ, m, ID∗) is
not equal to Invalid. The advantage ofA(AdvSigA) is defined as the probability that
it wins.

Definition 6. A forgerA (t, qS , qH , qE , ε)-breaks a signature scheme if A runs in time
at most t, and makes at most qS signature queries, qH hash queries and qE key ex-
traction queries, while AdvSigA is at least ε. A signature scheme is (t, qS , qH , qE , ε)-
existentially unforgeable under an adaptive chosen message attack if there exists no
forger that can (t, qS , qH , qE , ε)-break it.
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5.3 Proposed Construction

Let H1(·) and H2(·) be two cryptographic hash functions where H1 : {0, 1}∗→ G1

and H2 : {0, 1}∗→G1.

– Setup: Let P be an arbitrary generator of G1. The PKG chooses s ∈ F∗
q randomly

and sets Ppub = sP . The master secret key is s, which is kept secret and known by
the PKG only. The system parameters are

{G1, G2, q, n, P, Ppub, ê(·, ·), H1(·), H2(·)}.

– Extract: Same as the private key extraction algorithm defined in Section 3.2.
– Sign: For the user ID with secret key SID to sign on a message m, he/she follows

the steps below.
1. Randomly choose z from F

∗
q .

2. Compute z−1 (Both z and z−1 are kept in secret).
3. Compute T = z−1H2(m).
4. Compute U = zPpub.
5. Compute V = zSID.
6. The final signature is (T, U, V ).

– Verify: After receiving (T, U, V ) from the signer, any verifier performs the fol-
lowing to verify the signature.
1. Check whether ê(V, P ) = ê(U, QID).
2. Check whether ê(U, T ) = ê(Ppub, H2(m)).
3. If both of the equalities hold, the signature is considered to be valid.

5.4 Security Analysis

Theorem 1 In the random oracle model, if a PPT forgerA can (t, qS , qH , qE , ε) breaks
our scheme, then the CBDH problem can be solved with an advantage ε′ within a time
t′ < t + o(t).

Proof. Suppose that there exists an adversary A that has advantage ε in attacking our
IBS. We can show that an algorithm C can be constructed to solve the CBDHP in G1.
That is, given (P, aP, bP, cP ), algorithm C is able to compute (or output) ê(P, P )abc,
with the assumption that A will ask for H1(ID) before ID is used in any other query.
During the game,Awill consult C for answers to the random oracles H1 and H2, C will
keep lists L1 and L2 to store the answers used respectively. Let Ppub = bP . Algorithm
C interacts with A in the EF-CMIA game as follows:

Queries on oracle H1 for identity:
We embed part of the challenge aP in the answer of many H1 queries [14]. When A
asks queries on the hash value of identity ID, C picks y1 ∈R F∗

q and repeats the process
until y1 is not in the list L1. C then flips a coin W1 ∈ {0, 1} that yields 0 with probability
ζ1 and 1 with probability 1− ζ1. (ζ1 will be determined later.) If W1 = 0 then the hash
value H1(ID) is defined as y1P ; else if W1 = 1 then returns H1(ID) = y1(aP ). In
either case, C stores (ID, y1, W1) in the list L1.
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Queries on oracle H2 for message:
This time we embed the remaining part of the challenge cP in the answer of many H2

queries. When A asks queries on the hash value of message m, C picks y2 ∈R F∗
q and

repeats the process until y2 is not in the list L2. C then flips a coin W2 ∈ {0, 1} that
yields 0 with probability 1− ζ2 and 1 with probability ζ2. (ζ2 will be determined later.)
If W2 = 0 then the hash value H2(m) is defined as y2(cP ); else if W2 = 1 then returns
H2(m) = y2P . In either case, C stores (m, y2, W2) in the list L2.

Private key extraction queries:
When A asks for the private key of user ID, C looks for (ID, y1, W1) entry in L1.
If W1 = 1 then C outputs “failure” and halts since C does not know how to compute
y1abP . Otherwise a valid private key y1(bP ) is returned.

Sign queries:
WhenA asks for a signature of user ID on message m, C looks for (ID, y1, W1) entry
in L1. If W1 = 0, no matter what the value H1(m) is, C output the signature using the
Sign algorithm since C knows the corresponding private key. If W1 = 1, C checks for
the list L2 again. If (m, y2, 0) is found in the list, C fails and halts; otherwise C will pick
x ∈R F∗

q . The signature to be output is (T = x−1y2(bP ), U = xP , V = xy1aP ). It is
easy to see that the above signature is valid.

Forgery:
AlgorithmA returns a forgery (ID, m, T, U, V ) such that (T, U, V ) is a valid signature
on m by user ID. We neglect the rare case (the probability is at most 1/2k, where k
is the security parameter) that A makes a valid forgery without asking for the value of
H2(m) from C.

Probability of success:
C can solve the CBDHP if A have made a forged signature on message m for user ID
where (ID, y1, 1) is in the list L1 and (m, y2, 0) is in the list L2, otherwise C cannot
compute ê(P, P )abc from the forgery made byA.

The probability that C answers to all private key extraction queries is ζqE

1 , and the
probability that A makes a forged signature for user ID where (ID, y1, 1) is in the list
L1 is 1− ζ1. Similarly, the probability that C answers to all sign queries is at most ζqS

2 ,
and the probability that A makes a forged signature on message m where (m, y2, 0) is
in the list L2 is 1 − ζ2. Hence the probability for C to solve CBDHP successfully is
fqE (ζ1)fqS (ζ2) where fx(ζ) = ζx(1 − ζ).

Simple differentiation shows that fx(ζ) is maximized when ζ = 1− (x+1)−1, and
the corresponding probability is 1

x(1 − 1
x+1)x+1. So the maximum probability for C to

solve CBDHP successfully is

1
qSqE

(1− 1
qE + 1

)qE+1(1− 1
qS + 1

)qS+1

For large qS and qE , this probability is equal to 1/e2qSqE .

Solving CBDHP:
If A makes a forged signature on message m for user ID where (ID, y1, 1) is in the
list L1 and (m, y2, 0) is in the list L2, T is in the form of z−1y2(cP ) and V is in
the form of zy1(abP ), hence C can solve CBDHP by computing ê(V, T )y−1

1 y−1
2 =

ê(zabP, z−1cP ) = ê(P, P )abc 	
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5.5 Relationship with Verifiable Pairing

The above formal security analysis does not only show the unforgeability of our IBS.
Notice that our IBS is indeed the same as our verifiable pairing, with the role of cP
being replaced by H2(m). In the proof of Theorem 1 we proved that if the invocation
of verifiable pairing algorithm enables one to compute ê(abP, R) for any arbitrary R ∈
G1, then our IBS is forgeable, which is contradictory to our proof. One may argue that
it is generally insufficient to prove that an adversary cannot compute ê(abP, R) for a
randomly-chosen R since partial information about abP might be leaked. However,
our proof on the existential unforgery of our IBS has shown that the it is not the case,
otherwise our IBS is universally forgeable since the knowledge of private key is leaked.

From the security analysis we also know that without knowing the private key, one
cannot execute the algorithm of verifiable pairing to enable another party to calculate
the value of ê(abP, cP ), which is also an essential property of verifiable pairing.

6 ID-Based Signcryption

6.1 Overview

Signcryption scheme (e.g. [25, 30]) is a cryptographic primitive that combines encryp-
tion and signing in one step at a lower computational cost.

An ID-based signcryption scheme consists of five algorithms: Setup, Extract,
Signcrypt, Unsigncrypt and TP Verify (if public verifiability is satisfied). In
essence, Setup generates the common public parameters and the master secret key
depending on the security level parameter; Extract generates the private key for each
user according to the user’s public identity; Signcrypt produces the ciphertext from
a sender to a designated recipient; Unsigncrypt recovers the original message after
checking its integrity and origin; TP Verify enables any third party to verify the
integrity and the origin of the message.

An ID-based signcryption scheme is publicly verifiable if given a message m, a
signcrypted message σ, and possibly some additional information τ provided by the
recipient, a third party can verify that σ is a valid signature of the sender for m, without
knowing the recipient’s private key2. This property makes the party who makes the
signcryption not able to repudiate to anybody afterwards. There are not many ID-based
signcryption schemes having this feature, one of which is [22].

Obviously, we need some mechanisms to check for the correctness of τ since it
may be the point of attack for a dishonest recipient to forge a valid-looking signcrypted
message. This is where our verifiable pairing comes to play.

6.2 Libert and Quisquater’s Scheme

We first review Libert and Quisquater’s signcryption scheme [22]. Let H1, H2 and H3

be three cryptographic hash functions where H1 : {0, 1}∗ → G1, H2 : G2 → {0, 1}n

and H3 : {0, 1}n×G2 → F∗
q . Let E, D be the encryption and decryption algorithms of

2 Note that we adopt a different definition from that in [20].
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a secure symmetric cipher which takes a plaintext/ciphertext of length n respectively,
and also a key of length n. (For example, a one-time pad cipher.) The following shows
the details of the scheme.

– Setup: Let P be an arbitrary generator of G1. The PKG chooses s ∈ F
∗
q randomly

and sets Ppub = sP . The master secret key is s, which is kept secret and known by
the PKG only. The system parameters are

{G1, G2, q, n, P, Ppub, ê(·, ·), H1(·), H2(·), H3(·, ·), E(·)(·), D(·)(·)}.

– Extract: Same as the private key extraction algorithm defined in Section 3.2.
– Signcrypt: To send a message m ∈ {0, 1}n to B, A follows the steps below.

1. Choose x from F∗
q randomly.

2. Compute k1 = ê(P, Ppub)x and k2 = H2[ê(Ppub, QIDB )x].
3. Compute c = Ek2(m).
4. Compute r = H3(c, k1).
5. Compute S = xPpub − rSIDA .
6. The ciphertext is σ = (c, r, S).

– Unsigncrypt: To unsigncrypt a signcrypted message (c, r, S) from A, B follows
the steps below.
1. Compute r′A = rQIDA .
2. Compute k′

1 = ê(P, S)ê(Ppub, r
′
A).

3. Compute k′
2 = H2[ê(S, QIDB )ê(r′A, SIDB )].

4. Recover m = Dk′
2
(c).

5. Compute r′ = H3(c, k′
1).

6. Accept the message if and only if r′ = r, return Invalid otherwise.
7. Give (k′

2, m, σ) to the third party.
– TP Verify:

1. Compute k′
1 = ê(P, S)ê(Ppub, QIDA)r.

2. Compute r′ = H3(c, k′
1).

3. Accept the origin of ciphertext if and only if r = r′.
4. Moreover, accept the message authenticity if and only if m = Dk′

2
(c).

5. Return V alid if all tests are passed, Invalid otherwise.

6.3 Against Existential Forgery of Dishonest Recipient by Verifiable Pairing

Since the third party has no way to ensure the correctness of session key k′
2 obtained

from the recipient, dishonest recipient can randomly choose k′
2 such that the sign-

crypted message (c, r, S) decrypts to a plaintext m′ which is not equal to
DH2[ê(S,QIDB

)ê(r′
A,SIDB

)](c). This issue was not addressed in [22]. A simple fix to
this attack is to disclose the recipient’s decryption key to the third party, but this makes
the scheme rather inflexible and unrealistic.

Now we present modifications to Libert and Quisquater’s scheme which make their
scheme secure against this attack. In the modifications, recipient executes our verifiable
pairing protocol with the third party, i.e. apart from the signcrypted message (c, r, S),
recipient also sends T = z−1S, U = zPpub and zSIDB to the third party. This does not
compromise the recipient’s decryption key and only enables the third party to decrypt
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signcrypted messages in the form of (c#, r#, S#) where S# = S, which is a rare
case as S can be considered as randomly generated by the sender. The third party can
compute a correct k′

2 by itself from the formula k′
2 = H2[ê(T, V )ê(r′A, QIDB )].

After our modifications, the third party must get a session key and hence a correct
decryption of the signcrypted message, which ensures the non-repudiation property of
the scheme.

7 ID-Based Undeniable Signature

7.1 Overview

Digital signature is an important cryptographic primitive. A digital signature binds a
signer to an e-document. The validity of the digital signature can be verified by any
person who receives it without any help from the signer. This feature is undesirable
in some applications. For example, Bob can show a signed love letter from Alice to
a third party without the consent of Alice and Alice cannot deny to be the author of
the letter. To overcome this deficiency of digital signature, Chaum et al. introduced
the undeniable signature [8]. To verify an undeniable signature, the verifier must go
through an interactive protocol with the signer.

At the fourth ACM conference on electronic commerce (EC’03), Han et al. pro-
posed the first ID-based undeniable signature scheme3 [18], but their scheme is not
secure against the denial attack and the forge attack [29]. In this section, we add ver-
ifiable pairing to Han et al.’s scheme and propose an enhanced scheme that is secure
against Zhang et al.’s attacks.

7.2 Han et al.’s Scheme

We first review Han et al.’s ID-based undeniable scheme using their notations [18].
Then, we show that the changes they proposed to the scheme to prevent the signer from
denying a valid signature do not work.

Their Scheme: Let H1, H2 be two cryptographic hash functions where H1 : {0, 1}∗ →
Fq and H2 : {0, 1}∗→G1. Let A be a larger number about 1020 and [A] = {1, 2, · · ·, A}.

– Setup: Let P be the generator of G1. The PKG chooses s ∈ F∗
q randomly. It sets

Ppub = sP . The master secret key is s, which is kept secret and known by itself
only. The system parameters are

{G1, G2, q, P, Ppub, ê(·, ·), H1(·), H2(·), A}.

– Extract: Similar to the private key extraction algorithm defined in Section 3.2,
but there is one more component in the private key. Signer with identity ID ∈
{0, 1}∗ submits ID to the PKG. The PKG sets the signer’s public key QID to be
H2(ID) ∈ G1, computes the signer’s private key (DID, LID) by DID = sQID

and LID = s−1QID. Then the PKG sends the private key to the signer.

3 The authors claimed that the scheme is a confirmer signature scheme, but it is actually an
undeniable signature scheme (as this has also been pointed out by Zhang et al. in [29]).
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– Signing: To sign a message m ∈ {0, 1}∗, signer chooses a random k ∈ F∗
q , and

sets the alleged signature to be {r, S} = {kP, k−1DID + H1(m)LID}.
– Confirmation: To confirm an alleged signature {r, S} for a message m,

1. Verifier randomly chooses x ∈ [A], y ∈ F∗
q , and sends C1 = xyr, C2 = xyP

to signer.
2. Signer computes X = ê(r +Ppub, P −LID) and R = ê(C1, LID), then sends

them to verifier.
3. Verifier checks whether

ê(r, S)x = ê(Ppub, QID)xRH1(m)y−1
,

Ry−1
Xxê(P, QID)x = ê(r + Ppub, P )x.

If all of the equalities hold, then verifier accepts the signature as valid. Other-
wise, the validity of the signature remains undetermined.

– Denial:
1. Verifier randomly chooses x ∈ [A], y ∈ F

∗
q , and sends C1 = xyr, C2 = xyP

to signer.
2. Signer computes B = ê(C1,S)

ê(C2,DID)ê(C1,LID)H1(m) and sends it to verifier.

3. Verifier calculates the inverse of y and sends C = By−1
to signer.

4. Signer computes x′ from C by computing ê(r,S)

ê(Ppub,QID)ê(r,LID)H1(m) and sends

x′ to verifier.
5. Verifier checks whether x′ = x. If the equality holds, verifier accepts the signa-

ture as invalid. Otherwise, the invalidity of the signature remains undetermined.

A Minor Flaw: The scheme described in the previously cannot prevent a signer from
denying a valid signature. The reason behind is that verifier has no way to verify the
values of DID and LID used in B are valid based only on the value of B. So, the
authors proposed some changes to the denial protocol to handle this problem. We find
that the proposed changes will make the scheme fail in handling an invalid signature.

Their Proposed Changes: In Step 2 of the denial protocol, in addition to B, the signer
also sends G = ê(C2, DID) and R=ê(C1, LID) to the verifier. The verifier can check
whether ê(r, S)x=Gy−1

RH1(m)y−1
. If this equality does not hold, the verifier aborts

the protocol and concludes that the signer is lying.

The Flaw of Proposed Changes: If the signature {r, S} is valid, the changes work.
However, if {r, S} is an invalid signature, the equality does not hold even if both G and
R are valid. In other words, the signer cannot deny an invalid signature based on the
changes proposed even if the signer complies legally with the protocol.

7.3 Zhang et al.’s Attacks

In this section, we review the two attacks given by Zhang et al. [29], which are based
on the Han et al.’s scheme without the changes described in previous subsection.

The Denial Attack: Denial attack is an attack launched by the signer to deny a valid
signature. The proposed attack is given as follows. After the verifier sends C1 and C2
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to the signer, the signer picks α ∈ F∗
q , computes B = ê(C2, αP ) and sends it to the

verifier.
Then the verifier sends C = By−1

to the signer according to the denial protocol. As
C = ê(P, αP )x, the signer can find x′ from [A] such that C = ê(P, αP )x′

, the verifier
is convinced that the alleged signature {r, S} is not created by the signer.

The Forge Attack: Forge attack is an attack launched by an entity to forge a signature
with an arbitrary identity ID on any message m. The steps are given as follows. To
forge a signature for message m ∈ {0, 1}∗, the attacker A picks β ∈ F∗

q randomly
in addition to the k as in the original signing step. Without the knowledge of DID

and LID, A forms the alleged signature {r, S} by computing r = kPpub and S =
k−1(QID + βH1(m)P ).

In the confirmation protocol, after the verifier sends C1 and C2 to A, A computes
X and R by the equations X = ê(r + Ppub, P )ê(P, QID)−1ê(Ppub, βP )−1 and R =
ê(βPpub, C2), then A sends them to the verifier. It can be shown that both equalities
ê(r, S)x=ê(Ppub, QID)xRH1(m)y−1

and Ry−1
Xxê(P, QID)x = ê(r+Ppub, P )x hold.

In other words, the verifier will be convinced that the signature {r, S} for a message m
is a valid signature of the signer with identity ID.

7.4 Our Enhanced Scheme

– Setup: Same as Han et al.’s scheme. In addition, the PKG sets Pinv = s−1P and
publishes it. i.e. The system parameters are

{G1, G2, q, P, Ppub, Pinv , ê(·, ·), H1(·), H2(·), A}.

– Extract and Signing: Same as Han et al.’s scheme.
– Confirmation and Denial: To confirm or deny a signature {r, S} for a mes-

sage m,
1. Verifier chooses x ∈ [A], y ∈ F∗

q uniformly and randomly, and sends C1 =
xyr = xykP , C2 = xyP to signer.

2. Signer chooses z ∈ F∗
q uniformly and randomly, sets X = ê(r + Ppub, P −

LID), T = z−1C1, U = zPinv, V = zLID and sends them to verifier.
3. Verifier checks the validity of U and V by checking whether ê(V, P ) =

ê(U, QID).
4. Verifier checks the validity of U and T by checking whether ê(U, T ) =

ê(Pinv , C1).
5. If not all of the equalities hold, then verifier will consider signer lying and

the verification procedures will be aborted; otherwise, verifier computes R =
ê(V, T ) = ê(C1, LID).

6. To confirm a valid signature, the signer computes X = ê(r + Ppub, P −LID),
verifier checks the validity of signature by checking whether

ê(r, S)x = ê(Ppub, QID)xRH1(m)y−1
,

Ry−1
Xxê(P, QID)x = ê(r + Ppub, P )x.

If all of the equalities hold, then verifier accepts the signature as valid. Other-
wise, the validity of the signature is undetermined.
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7. To deny an invalid signature,
(a) Verifier computes B = ê(C1,S)

ê(xyPpub,QID)RH1(m) and sends C = By−1
to

signer.
(b) Signer computes x′ from C by computing ê(r,S)

ê(Ppub,QID)ê(r,LID)H1(m) and

sends x′ to verifier.
(c) If x′ = x, verifier accepts the signature as invalid. Otherwise, the invalidity

is undetermined.

7.5 Security Analysis

The denial attack given in [29] is prevented since R is calculated by verifier instead of
by signer. Although R is calculated based on the information (T , U and V ) provided
by signer, signer cannot cheat by providing “invalid” T , U and V that can pass the
validity check of verifier. Similarly, the forge attack given in [29] is prevented since the
attack is made possible by setting R = ê(βPpub, C2) where β is chosen by the attacker.
Moreover, the private key of signer will not be compromised since verifier does not
know z.

7.6 Convertible Undeniable Signature

We say that an undeniable signature scheme is convertible if the alleged signature can
be converted into an universally verifiable signature by the signer.

As a bonus result, we show how to make our scheme convertible. The signer just
chooses k in a way that is recoverable by the signer only for each message to be signed
instead of a random one (e.g. setting k = H1(m||DID||LID)). Releasing k turns the
alleged signatures into ordinary digital signatures since verifier can prove the validity
of the alleged signature by showing that ê(r, S)=ê(Ppub,QID)ê(kPinv ,H1(m)QID).

8 Conclusion

We introduce the notion of Verifiable Pairing, together with a concrete construction, to
ensure the security or the robustness of many cryptographic protocols, including (but
not necessarily limited to) threshold decryption, signcryption and undeniable signature.
As a bonus result, our scheme for verifiable pairing gives rise to an identity-based sig-
nature that is provably secure in the random oracle model without using the forking
lemma, assuming the hardness of the computational bilinear Diffie-Hellman problem.
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Abstract. Signature-based Network Intrusion Detection System
(NIDS) sensors match network packets against a pre-configured set of
intrusion signatures. Current implementations of NIDS sensors employ
only a single thread of execution and as a consequence benefit very little
from multi-processor hardware platforms. A multi-threaded sensor would
allow more efficient and scalable exploitation of these multi-processor
machines. We present in detail a number of novel designs for a multi-
threaded NIDS sensor and provide performance evaluation figures for a
number of multi-threaded implementations of the popular open-source
Snort system.

1 Introduction

A signature-based NIDS sensor analyzes packets from a computer network and
matches them against a set of signatures that trigger on known intruder tech-
niques. In a typical setup, a NIDS sensor analyzes all packets flowing through
some point in the network. The sensor detects whether the packets match any
of its signatures and delivers matching packets to on analysis backend.

The performance of the detection process is an important metric in the eval-
uation of a NIDS. An overloaded system will eventually drop incoming packets
and fail to scan all traffic.

Intrusion detection systems are often implemented in software on general-
purpose Central Processing Units (CPUs), often on off-the-shelf server hardware.
These systems offer high performance at moderate cost, are flexible and allow
easy maintenance. However, current NIDS sensors are implemented as a single
thread of execution and this limits their performance to the performance of a
single CPU, even if this CPU is part of a multi-processor platform.
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In this paper, we present a new approach to improve NIDS sensor perfor-
mance beyond the single CPU performance limit. Small-scale multi-processor
computing platforms have been around for a while now and operating system
support for them has matured. In our opinion, these platforms are excellent
candidates to run a compute-intensive job as a NIDS sensor. To exploit the ca-
pabilities of multiple processors, we develop a multi-threaded NIDS sensor. This
allows to spread the signature matching workload over multiple CPUs of the
same machine and performance to scale beyond single-CPU machines.

Paper Organization

In section 2 we discuss some related efforts to increase NIDS sensor performance.
In section 3, we show a general model for a single-threaded signature-based
NIDS sensor. Section 4 discusses new elements needed to evolve towards a multi-
threaded implementation and presents five multi-threaded designs for a NIDS
sensor. Section 5 presents the algorithm we implemented to guarantee the Order-
of-Seniority Processing (OoSP) of packets when multiple threads are processing
packets in parallel. In section 6, we evaluate our multi-threaded implementations
on different hardware configurations. We show that our approach can give a 16%
performance increase on a dual CPU platform, and provide some results that
indicate further scalability to platforms with more than two CPUs. We conclude
the article with a discussion of the results and suggestions for future work.

2 Related Work

The performance of signature-based NIDS sensors has certainly received atten-
tion from the research community over the last couple of years. Many research
papers use the popular open-source Snort implementation [1, 2] for analysis and
evaluation of their ideas, although the results are probably more generally ap-
plicable. We will also use modified Snort implementations to evaluate our ideas
in section 6.

2.1 Multi-processor and Multi-threading

Analysis of the performance of software NIDS sensors on server hardware has
shown that it is very dependent on the details of the hardware (processor ar-
chitecture, clock speed, cache size, . . . ) [3]. It also showed that existing single-
threaded sensor implementations only improve slightly when executed on multi-
processor platforms. The small improvement is achieved because interrupts re-
lated to packet reception can be handled by the Operating System (OS) kernel
on one processor, while the NIDS application software runs on an other.

The approach of a multi-threaded NIDS sensor has been explored only par-
tially up till now: some work has been done to separate signature matching on
the one hand and output or storage of detected intrusions on the other into dif-
ferent threads or processes running on the same machine [4, 5]. By isolating the
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output in a separate thread of execution, the signature matching thread is no
longer hindered by the I/O latency caused by storing the detected intrusions on
disk or in a (remote) database . However, this technique employs multi-threading
to isolate latencies, not to exploit the computing power of multiple CPUs in a
single machine. The workload-intensive signature matching is still in a single
thread and can not be spread over multiple CPUs.

2.2 Traffic Splitting

As another approach to scale beyond the performance of a single CPU, traffic
splitters or IDS load balancers have been proposed. In these setups, incoming
traffic is split and sent to a number of NIDS sensors running on separate ma-
chines. These sensors work mostly independently of each other, they exchange
only a limited amount of data or no data at all. Though some research [6, 7] and
commercial [8] splitter implementations exist, the approach introduces some is-
sues:

– all packets belonging to the same intrusion scenario, are to be sent to the
same sensor. This is not a trivial issue, as it is very dependent on the type of
intrusion: for example, how can packets potentially belonging to a distributed
attack be identified?

– balancing the workload between sensors is not trivial either. Reference [9]
studied the workload of Snort and reported the workload per packet to be
spread by a factor four and the workload per byte by a factor eight, depend-
ing on the traffic characteristics. Hence, neither the bit rate nor the packet
rate handled by a sensor are adequate measures to balance the workload.

– the splitting process itself is not distributed. To prevent it from becoming a
bottleneck itself, the splitting decision has to be taken in a limited time.

– system setup and maintenance is more complex compared to a single sensor
as the system now consists of both a splitting point and multiple separate
sensors.

These issues are not entirely solved in existing splitter solutions. However, their
performance seems to scale up quite well because hardware or Network Proces-
sors (NPs) can be used for the splitters.

Nevertheless we believe that a single machine with multiple CPU’s under
control of a single OS suffers less from each of the issues above, mainly because
the CPU’s have access to a shared memory where all state information can be
centralized. Therefore, exchange of information between threads is easier and
faster.

3 Model of a Signature-Based NIDS Sensor

Figure 1 shows a generalized model of a signature-based NIDS sensor. The solid
black line represents normal sequential packet processing by the single thread
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Fig. 1. Model of a single-threaded signature-based NIDS. The solid line represents
normal sequential processing of packets, the dotted lines represent a call to and return
from the output block in case of a detected intrusion.

of execution. An incoming packet is taken through the functional blocks consec-
utively. The dotted line shows the call to the output block when an intrusion
is detected. It is this call that can cause high-latency I/O to become a packet
processing bottleneck [4, 5].

When a packet has been completely processed (with or without intrusions
being detected), a new packet is acquired for processing.

We describe the functional elements in the following sections.

3.1 Packet Capture

This block makes input network traffic available for processing. Its goal is to get
a ‘raw’ network packet (for example a complete Ethernet packet) into a memory
location that can be readily accessed by the other blocks of the NIDS sensor.

In many implementations, packet capture is handled through the cross-plat-
form libpcap [10] API and library.

3.2 Protocol Header and Field Extraction

A network packet consists of multiple encapsulated protocols. Signatures will
often need to check various fields of various protocols. Therefore, a NIDS iden-
tifies protocol headers and field boundaries early on and uses them throughout
the matching process. This extraction step also allows multiple link-layer proto-
cols and complex encapsulation (caused by tunneling for example) to be made
transparent for later steps in the process.

3.3 Stateful IDS Avoidance Countermeasures

A NIDS that considers incoming packets independently of each other, and hence
maintains no state information across packets, can easily be evaded: by spreading
elements of the signature over multiple packets (for example, through IP frag-
mentation or TCP segmentation), an intruder can avoid detection by a stateless
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NIDS. Even a stateful NIDS can sometimes be evaded by exploiting subtle dif-
ferences in the way the packet is handled by the NIDS on one hand and the
targeted system at the other. Reference [11] gives a good overview of different
techniques to avoid detection by both stateful and stateless NIDS.

Current NIDS systems implement a number of countermeasures to be less
vulnerable to evasion. These countermeasures require state information to be
kept across different packets of the same connection. These techniques include:

– Reassembling IP fragments into complete datagrams for signature matching.
– Reassembling TCP segments into a byte stream. The byte stream is then

used for signature matching.
– Checking for and alerting on overlapping IP fragments or TCP segments

with different data.
– Checking for and alerting on violations of protocol rules (for example, TCP

segments that are sent outside of the TCP window).

This list is not exhaustive and we will not go into the details of each technique
here. What they all have in common however, is that the integrity of their state
information will need to be protected when it is accessed from multiple threads
in a multi-threaded NIDS (see also section 4).

3.4 Content Normalization

Some application level protocols allow multiple equivalent representations of the
same content. For example, Uniform Resource Names (URNs) as used in HTTP
allow an alphanumeric character to be represented both as a single character
(’A’) and as the escaped hex-code of that character (‘%41’).

This complicates signature-matching on such content, as it is generally not
feasible to have all possible representations of the same signature in the signa-
ture database. This would cause an explosion in the signature database and a
prohibitive increase in the (already large) signature matching costs.

Therefore, a more interesting approach is content normalization: the content
in an incoming packet is converted to a standard representation and all signatures
are also in that same standard representation.

Content normalization is a per-packet stateless operation.

3.5 Signature Matching

In most NIDS systems, a signature is constructed as a logical conjunction of
predicates. When all predicates are satisfied, the signature matches.

Predicates can be distinguished into two categories: those that are concerned
with protocol headers and fields (generally up to and including the TCP/UDP
layer) and those that are concerned with higher-layer protocols and the ‘content’
of the packets. These content predicates usually involve string search and this
string matching has been identified as the most time-consuming algorithm in a
signature-based NIDS: reference [12] found 31% of the Snort execution time to
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be caused by string matching. The complete signature matching block, including
both header and content predicates, accounts for more than 50% of the execution
time.

3.6 Output Block

In a typical system, the output block will generate information about the de-
tected intrusions: a timestamp, the class and priority of the intrusion, details
about the addresses involved in the intrusion, a complete packet trace of the in-
trusion scenario, etc. This information is either stored locally or sent to a central
NIDS analysis backend.

4 Designs for a Multi-threaded NIDS

In this section, we present a number of multi-threaded designs based on the
general NIDS model laid out in 3. The different designs have some elements
in common, so we will discuss these elements before introducing the designs
themselves.

4.1 Common Elements for the Designs

Pools. In the multi-threaded designs, multiple packets will be processed and
multiple events can be pending simultaneously. To implement the (de-)allocation
of packet and event memory in a flexible and efficient way, a number of buffers
is allocated during the system’s initialization. The buffers are initially stored in
pools, so a thread can readily take buffers from a pool when it needs to and
return them to the pool when they are no longer used.

Queues. A second structure that will show up in the following designs is the
queue between threads. Such a FIFO queue buffers objects created by producing
threads until they are taken off by a consumer thread. Multiple threads can
produce and consume objects for and from the same queue. The queues are
implemented as doubly-linked circular lists.

A queue facilitates asynchronously passing an object between two threads.
Care needs to be taken that the queue doesn’t get corrupted due to simultaneous
access, but the critical section that needs protection is small.

Overhead. Multi-threaded designs will introduce some overhead as compared
to the original single-threaded model. This overhead is caused by three factors.
First of all, variables shared between threads (such as the queue and pools)
need to be protected by synchronization primitives, for example mutexes or
semaphores, that need to be locked and unlocked. Second, multiple threads are
active at the same time and need to be managed by the OS. This overhead is
dependent on the frequency and cost of thread switching and is mainly depen-
dent on OS and hardware architecture. Third, multiple events and packets can
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be pending simultaneously which requires a more conservative design: global
variables can never be used for packet- or event-dependant data.

It is important for the multi-threaded designs to limit the overhead intro-
duced and simultaneously maximize the opportunities for concurrent execution
on several CPUs.

Configurability. The multi-threaded designs introduce new parameters to con-
figure the designs: the size of queues and pools and the number of threads work-
ing in parallel. These parameters need to be chosen with care. For example, in
general it is not a good idea to have much more running threads than the sys-
tem can concurrently execute on its CPUs, as this will only increase the thread
switching overhead.

Whenever the design figures below show more than one thread in parallel,
the designs are actually configurable for any number of parallel threads.

4.2 Design 1: Separate Output Block

Figure 2 shows design 1 where the output block is isolated into a separate thread.
A FIFO queue buffers events (e.g. alerts about intrusion signatures) produced by
the detection thread for consumption by the output thread. This design isolates
the output latencies into a separate thread and is comparable to the designs in
[4, 5].

4.3 Design 2: Parallel Signature Matching

Design 2 breaks the single packet processing loop and runs parallel signature
matching threads. After the content normalization block, packets enter the
Matching Queue and are taken out by a signature matching thread.

This design allows the most time-consuming block to be executed in parallel
threads potentially running on different CPUs. It does not introduce a lot of
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extra overhead compared to design 1, since the signature matching block does
not depend on state information.

4.4 Design 3: Parallel Content Normalization
and Signature Matching

Design 3 is a slight variation on design 2. The content normalization blocks are
also moved into the signature matching threads, to allow a little extra code to
be executed in parallel threads. This change introduces no extra overhead.
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4.5 Design 4: Parallel Stateful Countermeasures,
Content Normalization and Signature Matching

Design 4 moves the stateful NIDS avoidance countermeasures into the signature
matching loops. This introduces two additional issues.

First, the same state information is now potentially accessed from multi-
ple threads. Therefore, synchronization constructs such as mutexes need to be
added to the code to prevent the shared state information from being corrupted.
The granularity of the synchronization (the amount of data protected by a sin-
gle mutex, which influences how often and how long that mutex is locked) is a
difficult issue when implementing this protection. Fine-grained protection typi-
cally causes more overhead from frequently locking and unlocking mutexes, but
requires threads to wait less often and less long to enter a critical section. Coarse-
grained protection causes less overhead and is easier to implement, but typically
causes threads to wait more often and longer. This granularity issue is very de-
pendent on the structure of the state information and the algorithms used to
access it. We explain the granularity used in the evaluation implementations in
section 6.1.

Second, because multiple threads execute in parallel it is now possible that
the stateful algorithms do not process all packets in the order they originally
arrived in. To guarantee the Order-of-Seniority Processing (OoSP) in design 4,
we added an OoSP conflict resolution block. The OoSP issue and the algorithm
used will be discussed separately in section 5. To avoid confusion in design 5,
the queue has been renamed to Capture Queue.
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4.6 Design 5: Parallel Stateful Countermeasures
with Separate Parallel Content Normalization
and Signature Matching

Design 5 restores the matching queue between the stateful IDS avoidance coun-
termeasures and the content normalization blocks. This design limits the impact
of the OoSP requirement imposed by the countermeasures block: after the pack-
ets pass through the countermeasures block, they are stored in the matching
queue and can be further processed without enforcing the OoSP requirement.
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5 Order-of-Seniority Processing

5.1 Problem Statement

Order-of-seniority-processing is the requirement that packets are processed in
the order they originally arrived in. In the NIDS sensors, only the NIDS avoid-
ance countermeasures impose this requirement because of their stateful nature.
A stateful algorithm such as TCP anomaly detection for example can behave er-
ratically when the segments of the TCP three-way handshake are not processed
in their original order. A NIDS sensor located between two communicating hosts
will capture the packets in their original order, but if it does not process these
packets in-order, this would be interpreted as a violation of the TCP protocol
rules and could trigger a false positive intrusion alert.

For most algorithms, the OoSP requirement is not imposed across all packets
(this would make parallel processing very difficult), but only for packets within
the same flow. In general, all packets that read or update the same elements in
the state information of the algorithm form a flow.

5.2 An OoSP Algorithm for Designs 4 and 5

We developed a strategy to guarantee the OoSP requirement for the stateful IDS
avoidance countermeasures block in designs 4 and 5. It is simple and flexible and
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it provides fast resolution when an OoSP conflict is found. The strategy consists
of three elements: each packet is assigned a flow identifier (flow ID), the flow ID
is used to detect an OoSP conflict and when a conflict is found, it is resolved by
storing the packet into a specific queue.

Flow Identifier. Because packet capture and header and field extraction are
carried out in a single thread, packets enter the Capture Queue in order-of-
arrival. Each packet is associated with a flow ID, an identifier that is identical
for all packets belonging to that same flow. Because the flow ID is dependant on
header fields, it is assigned in the header and field extraction block in in designs
4 and 5.

To reduce the likelihood of an OoSP conflict and to allow a maximal work-
load distribution between threads, flow identification should result in sufficient
different concurrent flow IDs.

OoSP Conflict Detection. Each preprocessor thread is related to a flow ID
field. A thread that is processing a packet, announces its current flow ID in
this field. A preprocessor thread that is not processing a packet, will consume
a packet from the Capture Queue and compare the flow ID of the new packet
to the flow IDs of the other preprocessor threads. If a match is found, an OoSP
conflict is detected and needs to be resolved. When no match is found, the
thread announces the flow ID its own and starts processing. Because it is read
and written by multiple threads, the list of active flow IDs is protected by a
mutex.

OoSP Conflict Resolution. When an OoSP conflict is detected by a thread
that consumed a packet from the capture queue, the new packet can not be
further processed by that thread. To resolve this situation, every preprocessing
thread is equipped with a FIFO queue. The thread that detected the conflict
will store the packet into the wait queue of the thread that is processing packets
with the same flow ID. As a consequence, all packets in a wait queue belong to
the flow ID that is being processed by its corresponding thread.
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A preprocessor thread will process all packets from its wait queue before
consuming new packets from the capture queue.

This strategy assures that packets with the same flow ID are never simul-
taneously processed in different threads and that they are always processed in-
order-of-arrival.

5.3 Discussion

The strategy laid out in this section is very well suited for designs 4 and 5. First,
an OoSP conflict is immediately resolved by placing the conflicting packet in the
appropriate wait queue and caused no blocking. Second, there is no fixed relation
between flow IDs and preprocessing threads: except when they belong to a flow
that is already being handled, packets are handled by the first preprocessor
thread that becomes available. Finally, the impact of the strategy is limited:
when no conflict is found, the overhead introduced is minimal.

6 Evaluation

6.1 Test Setup

We implemented the five multi-threaded designs through modifications of the
Snort 2.0.0 release. The multi-threading primitives were implemented with the
Posix threads (pthreads) API.

The granularity of protection of state-information in designs 4 and 5 is rather
coarse: the stateful IDS avoidance countermeasures in Snort are implemented as
modular preprocessors, where each preprocessor performs a specific function (IP
defragmentation, TCP reassembly, . . . ). In our implementation, each preproces-
sor is associated with a single mutex that protects all its state information.

The flow ID used in the OoSP Conflict Resolution block is composed of
source and destination IP address ordered in order of magnitude, thus mapping
all packets between a pair of hosts onto the same flow. This flow definition suits
both the IP defragmentation and TCP reassembly blocks.

The implementations were evaluated on a dual Intel Xeon machine running
at 2.8GHz with a 400MHz bus, 512kB L2 cache and 1GB of RAM memory. The
Xeon processors support Hyper-Threading [13], a technology where two threads
can be simultaneously executed on one processor. However, these two threads
share some resources in the processor’s pipeline and their performance is lower
compared to two threads running on separate processors. A dual Xeon machine
with Hyper-Threading enabled hence supports four concurrent threads. Hyper-
Threading can be disabled in the system’s BIOS.

The system runs RedHat Linux 9 with a RedHat 2.4.20 kernel and glibc
2.3.2. This combination provides the Native Posix Threading Library (NPTL)
[14], a recent and improved implementation of the pthreads API.

All experiments were carried out with the 1458 default rules of Snort’s 2.0.5
release. The alerts were directed to the standard output (stdout). Traffic is taken
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from the Lincoln Labs DARPA Intrusion Detection Evaluation Data Set [15, 16],
specifically the outside tcpdump data of weeks 1 and 4. Care was taken that the
dumpfile was completely cached in RAM memory at the start of each experiment.
Each experiment was repeated 20 times and the run times were averaged.

The number of parallel threads and the queue and pool sizes were adapted
to the number of threads the system could simultaneously execute.

6.2 Experimental Results

Table 1 shows the sum of the averaged run times for the 10 different dumpfiles.
The table also shows the run time percentage, relative to Snort 2.0.0 on a single
CPU as a reference.

Table 1. Comparison of the cumulated run time and run time percentage on the 10
Lincoln Labs dumpfiles (Snort 2.0.0 on single CPU = 100%).

Run time (s)
single Xeon,
Hyper-Threading
disabled

dual Xeon,
Hyper-Threading
disabled

dual Xeon,
Hyper-Threading
enabled

Snort 2.0.0 132.1 (100%) 131.8 (99.8%) 131.6 (99.6%)
Design 1 163.6 (123.8%) 162.7 (123.2%) 162.4 (122.9%)
Design 2 189.8 (143.7%) 124.3 (94.1%) 113.7 (86.1%)

Design 3 180.2 (136.4%) 117.6 (89.0%) 111.0 (84.0%)

Design 4 222.4 (168.4%) 206.4 (156.2%) 199.9 (151.3%)
Design 5 223.9 (169.5%) 173.6 (131.4%) 159.0 (120.4%)

Looking at the performance of Snort 2.0.0 on the three configurations, these
results confirm the findings of [3] that current NIDS sensor implementation ben-
efit very little from multi-CPU machines because of the reasons we mentioned
in section 2.

Looking at the performance of different designs on a single-CPU-machine,
the original Snort 2.0.0 design is clearly the most efficient. The more complex
multi-threaded designs introduce the extra overhead expected in section 4.1. This
overhead can not be compensated for on a single-CPU configuration. There is
also no performance gain from the isolation of the output block (design 1), as
the output to stdout causes no considerable latencies.

The most interesting results are achieved by designs 2 and 3. They carry a
considerable overhead when executed on a single-CPU machine (36-44%), but are
able to spread their workload on the multi-CPU machines, were they actually
outperform the single-threaded implementation by 16%. Individual dumpfiles
show an improvement from 7% up to 20%. Design 3 is slightly faster than design
2 because the the former also executes its content normalization block in parallel
threads.

The dual Xeon machine with Hyper-Threading enabled supports 4 concurrent
threads, two threads on each Xeon CPU. The results indicate a considerable
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performance increase because of these extra threads for designs 2 and 3. We
expect even more performance increase from a machine with 4 separate CPUs
or from one with 4 Hyper-Threading-enabled CPUs, but unfortunately we were
unable to evaluate the designs on such a platform.

Designs 4 and 5 clearly carry a large overhead because of the more com-
plex designs, more threads and more shared data between threads. On a single
CPU-machine, they add almost 70% overhead. Part of this overhead can be com-
pensated for on the dual-CPU machines, but then the designs are still unable to
outperform the original Snort 2.0.0 implementation.

We identify two reasons for this disappointing performance of designs 4 and 5.
First, the protection of the state information is implemented with rather coarse
granularity (see section 6.1). This limits the potential for parallel execution in
the stateful avoidance countermeasures block. Second, the maximum number of
concurrent threads in our dual CPU test-setups is too small to compensate the
additional complexity introduced by these designs.

Design 5 outperforms design 4, because the impact of the OoSP requirement
is smaller in the former: once the packets enter the matching queue, in-order
processing no longer needs to be enforced.

Figure 8 shows the run times for the individual dumpfiles on the dual Xeon
with Hyper-Threading enabled.
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Fig. 8. Results on a Dual Xeon machine, Hyper-Threading enabled.

7 Conclusion and Future Work

In this article, we showed that a multi-threaded implementation of a signature-
based NIDS sensor is able to outperform existing single-threaded implementa-
tions on small-scale multiprocessor machines. This result provides a new ap-
proach to increase the performance of individual sensors.
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However, the design choices for a multi-threaded implementation have a con-
siderable impact on the performance increase. Of the 5 designs presented here, 3
didn’t show an improvement on a multi-CPU machine. The stateful NIDS avoid-
ance countermeasures are best kept in a single thread to avoid the large overhead
introduced by protecting the state data and by enforcing the OoSP requirement.
Instead, multi-threading should first focus on the workload-intensive blocks that
keep no state information, such as signature matching or content normalization

We were only able to evaluate our designs on a dual-processor platform,
supporting at most 4 concurrent threads. It would be very interesting to evaluate
multi-threaded NIDS sensors on small-scale multiprocessor machines with four
or more processors. On these machines, we expect designs 2 and 3 to scale
their performance by adding signature matching threads until the stateful NIDS
avoidance countermeasures become the bottleneck. In this situation, designs 4
and 5 might allow performance to increase further by spreading the stateful
NIDS avoidance countermeasures workload.

For future NIDS implementations, we believe that a multi-threaded approach
should be seriously considered. We were able to achieve a performance increase
through modification of existing single-threaded code, but we think that a com-
pletely new implementation that takes multi-threading into account from the
start would suffer less overhead and perform even better.
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Abstract. Recently, there has been strong interest in distributed schemes for in-
trusion detection in order to defend against distributed attacks such as DDoS at-
tacks. In this paper, we focus on a placement problem of a detection system 
across large-scale networks for distributed intrusion detection approaches. We 
formulate the placement problem as a set packing problem that is NP-hard. We 
then present an efficient algorithm for minimizing the number of detection sys-
tems and finding the optimal placement while limiting the impact of distributed 
attacks. 

1   Introduction 

With the Internet’s rapidly growing connectivity, networked computer systems are 
playing increasingly vital roles in modern society. While the Internet has brought 
great benefits to society, it has also made critical systems vulnerable to malicious 
attacks [1]. Distributed and coordinated attacks (e.g. the Mitnik and most distributed 
denial of service (DDoS) attacks [2-4]) are becoming increasingly popular among 
hackers; such attacks are difficult to detect and to defend against.  

In recent years, there has been strong interest in distributed schemes for intrusion 
detection in order to defend against distributed attacks. These approaches, such as 
EMERALD [5] and GrIDS [6], have focused on intrusion detection across a computer 
network. They collect information from a variety of vantage points within computer 
systems and networks, and analyze this information for symptoms of security prob-
lems. The efforts include research of techniques on how to coordinate data generated 
by intrusion detection system (IDS) placed across a network.  

In order to design an effective and deployable distributed architecture for intrusion 
detection, there are many challenging tasks involving a variety of algorithmic and 
engineering design issues [8]. For instance, what is the minimum number of detection 
systems (DSs) required in the given infrastructure? Generally, a larger set of DSs 
translates into higher cost and a longer delay in response to intrusion. Additionally, 
optimal placement of the DSs, which is closely related to the size of the DS set, is also 
an important problem; the objective here is to ensure that the set of DSs can observe 
most of the attack scenarios.  
                                                           
∗  This work was sponsored in part by the Korean Ministry of Information and Communication 

in the context of University IT Research Center Project.  
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In this paper, we focus on the placement problem of DSs across large scale net-
works for distributed intrusion detection approaches. Our objective is to place DSs 
across networks so as to minimize the overall number of DSs while limiting possible 
nodes that can participate in an attack. We formulate this problem as  a set packing 
problem and present an efficient heuristic algorithm. 

In the next section, we present the issues of DS placement and we formulate the 
DS placement problem and propose a heuristic algorithm. In the following section, we 
compare the performance between our proposed scheme and other schemes. Finally, 
we provide conclusions in the last section.  

2   Placement of Distributed Detection System 

2.1   Objectives for DDS Placement 

In order to design an effective and deployable distributed architecture for intrusion 
detection, the objective of DSs placement is to ensure that the set of DSs can observe 
most attack scenarios.  

 

Fig. 1. Illustration of DS executed at nodes 3, 4, and 7 

Consider the undirected graph shown in Fig. 1. Each node can be interpreted as a 
router or an autonomous system. In this paper, we assume that all attack traffic pass-
ing through sensor nodes that perform DS are detected and routing is performed by 
the shortest path between two nodes. In this figure, we assume that DSs are placed in 
nodes 3, 4, and 7. Then, all attack traffic destined to node 1 is detected except traffic 
from node 2. On the other hand, attack traffic from nodes 0, 6, 8, and 9 can reach 
node 5 because there is no DS along the path. Thus, node 1 is more robust than node 5 
against distributed attacks. If additional DS is placed in node 5, no node in this net-
work can be attacked from any other nodes that are separated by more than 2-hops. 
This example serves to illustrate the potential opportunities available by placing DSs 
in networks to detect attacks. On the practical side, it is impossible to implement DSs 
in all nodes in a network because this requires much greater system resources and 
cost. Additionally, most distributed attacks (e.g. DDoS attack) become critical threats 
when a great number of nodes (e.g. servers or hosts) participate in an attack. Thus, if 
we place DSs across the network in a well distributed manner, the impact of attacks 
can be sufficiently localized and minimized and can thus be ignored.  

The key objectives of placing DSs can be summarized as follows: (i) minimize the 
total number of the DSs; (ii) minimize the number of nodes that could send the attack 
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packets to any other nodes that are separated by more than the given number of hops 
without passing through sensors; (iii) find the optimal placement of the DSs that sat-
isfy (i) and  (ii). 

In the following section we formulate the DS placement problem (DSPP) and drive 
algorithm to solve this problem more efficiently. 

2.2   DS Placement Problem 

Let G = (V, E) be an undirected graph representing Internet topology. Each node in V 
can be interpreted as a router or an autonomous system. We use T  to denote a subset 
T V⊆  of nodes where intrusion detection is performed. We callτ | | / | |T V=  the cov-
erage ratio. Let r  be the localization factor, which means the tolerance level against 
attacks. That is, each node can be permitted to be attacked by any other nodes that are 
separated by less than r  hops. This is because nodes that can be candidates for attack 
sources are localized by r  and the attack impact of these nodes can be small enough 
to be ignored when r  is small.  

To quantify the detecting effect, we define the risk level of node i  against attacks, 
( )ic r , as the number of nodes that are more than r  hops apart from node i  and can 

send attack packets to node i  without passing through DSs. If ( ) = 0ic r , then every 

attack can be localized to within a small set of candidate nodes with a distance of less 
than r  hops from node i . Additionally, if (1) 0ic = , then all attack packets destined to 

node i  are detected because all traffic destined to node i  must pass through at least 
one DS. However, a smaller value of r  in V means that T  has to be larger. On other 
hand, a larger value of r  means that a node is at greater risk, because the node can 
receive more attack traffic without being detected by DSs executed in T. Generally, 
DS should be located at strategic locations in the Internet because implementing DS 
in a specific node requires much more system resources and cost. On other hand, the 
number of DSs has to be sufficient and DSs have to be well distributed among nodes 
in order to detect a distributed attack effectively. Therefore, our objective is to mini-
mize the total number of DSs while satisfying ( )ic r =0 for a given r. 

Mathematically, we can formulate the DSPP as follows:  

(DSPP)  

( )
min  

 s.t.  0,    for i

T

c r i V= ∀ ∈
 

Let ix  be the decision variable, which is 1 if node i  performs DS and 0 otherwise. 

Let eT  be the subset of E , which is composed of the edges that connect the nodes 

that perform DS. We define the distance between node i  and j  in G , ( ),d i j  as the 

minimum number of hops between the nodes. For a given T , consider ( ),G V E′ ′ ′  

where \ ,  \ eV V T E E T′ ′= = . Let ijc  be 1 if the distance between node i  and j  is more 

than r  in G′ , and 0 elsewhere. Then, the above formulation is re-presented as fol-
lows: 
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(DSPP2) 

{ }

min   

  s.t.  =0,   for 

         0,1 ,   for 

i
i

ij
j

i

x

c i V

x i V

′∀ ∈

∈ ∀ ∈

∑
∑  

However, in this problem the evaluation of ijc  will be an exhaustive work, because 

the graph should be modified according to the value of ix . Moreover, the modifica-

tion becomes an obstacle to grasp an intuitively optimal solution. Thus, we transform 
the above formulation to an equivalent formulation. 

Let { }1, ,V m= �  be a finite node set and let { }jV  for {1, , }j N n∈ = �  be a given 

collection of subsets of V . Let’s introduce a set packing problem. We say that F N⊆  
is a packing with respect to V  if j kV V = ∅�  for all ,  ,j k F j k∈ ≠ . Each packing is 

composed of nodes that are not DS nodes. Maximizing the number of these nodes is 
equivalent to minimizing the number of DS nodes for a given graph. The maximum 
value of ( ),d i j  for all nodes ,  ki j V∈  in a packing should be less than r . The nodes 

that are not included in a packing are the DS nodes. Let jx  be the decision variable, 

which is 1 if the index j  of jV  is included in the set packing F, and 0 otherwise. Let 

ija  be the coefficient, which is 1 if the node i  is included in jV , and 0 otherwise. 

Then, the previous DSPP2 is equivalent to the following combinatorial optimization 
problem: 

(DSPP3) 

max   ij j
i V j N

a x
∈ ∈
∑∑   

s.t.  1   for ij j
j N

a x i V
∈

≤ ∀ ∈∑  (1) 

( , ) 1   for ,  ,  ,  j jd i k x r i k V i k j N≤ − ∀ ∈ ≠ ∀ ∈  (2) 

2 ( , )   for ,  ,  ,  ,  j l j lx x d i k i V k V j l j l N≤ ∀ ∈ ∈ ≠ ∀ ∈  (3) 

 nx B∈  (4) 

Constraint (1) is the general set packing constraint. Constraint (2) means that the 
maximum value of ( ),d i k  for all nodes i , k  in a feasible packing should be less than 

r . Constraint (3) means that the distance between a node of jV  and a node of lV  

should always be more than 2-hops. Since we pack the nodes that are not DS nodes, 
DS nodes should be placed around a packing. That is, if jV  and lV  are feasible packs, 

then there should be DS nodes between a node of jV  and a node of lV . 

This problem is basically a set packing problem, which is NP-hard [7]; hence, we 
have to rely on heuristic solution methods. However, in this DSPP3 formulation, 
intuitively, the set of DS nodes becomes the cut across the packs. We propose a heu-
ristic algorithm based on this intuition. Our heuristic algorithm packs some connected 
nodes while the maximum value of distances in the pack is less than r . Then, all 
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nodes connected directly to the pack become DS nodes. This process repeats until all 
nodes are packing or become DS nodes.  

<Heuristic Algorithm> 
Step 1: Set 1i =  and ( ) ( )1 1 1, ,G V E G V E= . DS = ∅ . 

Step 2: Search a node j∗  that has the minimum number of edges in ( ),i i iG V E . 

{ }iV j∗= . iE = ∅ . iDS = ∅ . 0id = . 

Step 2.1: Search a node j∗  that has the minimum number of edges in the nodes 

such that ,  i
ij V j V∗ ∗∈ ∉ , ( ) . . ,ik V s t e j k E∗∃ ∈ ∈ .  

Step 2.1.1:  If there is not such a node then proceed to 3. 

Step 2.2: ( ){ } ( ),    . . , ,i i iE E e j k k s t e j k E k V∗ ∗= ∀ ∈ ∈� . 

Step 2.3: { }i iV V j∗= � .  

Step 2.4: Calculate the maximum value of distances id  in ( ),i iG V E . 

Step 2.5: if 1id r< −  then proceed to 2.1, else proceed to 3 

Step 3: { } ( ) , , , . . i i
i i i iDS DS k k V k V e k l E s t l V= ∀ ∈ ∉ ∈ ∈� . 

Step 3.1: ( ){ } ( ),   ,  . . , , , i
i i i iE E e j k j k s t j DS k V e j k E′ = ∀ ∈ ∈ ∈�  

Step 3.2: i i iV V DS′= � . 

Step 3.3: ( ){ } ( ),   ,  . . , , , ,i i
i i i iE E e j k j k s t j V j V k DS e j k E′ ′ ′= ∀ ∉ ∈ ∈ ∈�  

Step 3.4: 1 \i i
iV V V+ ′= , 1 \i i

iE E E+ ′= . 

Step 3.5: If 1iV +  is empty then proceed to 4, else 1i i= +  and proceed to 2. 

Step 4: iDS DS=� . Terminate. 

3   Numerical Results 

The performance of the proposed scheme is evaluated by simulations over a 12-node 
ring network, a 14-node NSFNET network, and 48-node CTNET network topology 
(Fig. 2(a), (b), and (c), respectively). For the purpose of simulation, we have also 
considered a connection-based placement scheme (CPS) that samples nodes as DSs 
from V  based on the number of connections of each node. The CPS chooses the node 
that has the most connections as a DS repeatedly until the target r  is reached. In the 
case of a tie, it chooses a node randomly.   

In our simulations, we consider routing policies that allow multi-path routing. 
When routing is performed between two nodes, we select all possible loop-free short-
est paths between them.  

Fig. 3 shows the average coverage ratio for each network that satisfies ( ) 0ic r =  for 

all nodes as r  increases from 1 to 8. From these figures, we observe that the average 
performance of CPS is very limited. This reinforces that DS placement is an impor-
tant issue. As shown in Fig. 3, the proposed scheme always has a lower coverage 
ratio. This means that our scheme requires fewer DSs than CPS for satisfying the 
same r . As a result, the proposed scheme performs better than CPS. 
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Fig. 2. (a) 12-node ring network. (b) 14-node NSFNET network. (c) 38-node CTNET network 
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Fig. 3. Coverage ratio of (a) 12-node ring network, (b) 14-node NSFNET network, and (c) 38-
node CTNET network 

We can observe that with an increase of r , the average coverage ratio decreases. 
However, a larger value of r  means that the network is more vulnerable against dis-
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tributed attacks. On the other hand, when r =1, the coverage ratios of CPS and the 
proposed scheme are above 65% and 50%, respectively. These values are so high as 
to be negligible due to the high cost of larger coverage. Therefore, perfect detection of 
attacks (in the case of r =1) is intrinsically difficult to attain, and should not be con-
strued as a viable performance goal. Thus, we have to select r  carefully based on the 
current system resources and the impact of attacks. 

4   Conclusions 

We have presented a DSs placement approach in order to detect distributed attacks. 
We have shown that perfect detection is difficult to achieve in the Internet environ-
ment while maintaining sparse coverage. However, this is mitigated by the fact that 
attack traffic that can escape the DS can be localized within r  hops.  

The performance results show that our scheme reduces the total number of DSs 
while localizing attack candidate sources. Our scheme can be carried over to AS or 
router topologies within an AS. 
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Abstract. Currently there are a wide range of techniques dedicated to
network security among which honeyfarm is one of the newest devel-
opment. Honeyfarm provides replication of web sites aiming to redirect
hackers from the corresponding production sites. To achieve the goal,
transparency and quick access are the basic requirements for honeyfarm.
Content delivery network (CDN) is one method for providing replicated
web sites and the technique is able to address the requirement for rapid
content delivery by redirecting clients to the replicas. However, there
is no transparency in the redirection. Furthermore, CDN also redirect
clients in a centralized way which will induce latency in content delivery.
This paper describes the ways to improve CDN to make it suitable to
use as a routing mechanism for honeyfarm.

Keywords: Network security; distributed computing; content delivery
network; honeyfarm.

1 Introduction

CDN is the acronym of “content delivery network”. It is a dedicated network of
servers, deployed throughout the Internet, which Web publishers can use to dis-
tribute their content on a subscription basis. In order to enhance the response of
network, some mirror web sites will be constructed to provide the same contents
and responses as the origin servers. When a client types the domain name of his
target or the IP address in the browser, the traffic will be transmitted to the local
DNS. Then the local DNS server sends this request to the RRI (request-routing
infrastructure). After receiving the request from the local CDN server, the RRI
chooses the most appropriate CDN node and sends the IP address of the chosen
CDN node to the users. This way, all the users’ requests will be redirected to
this IP address and the CDN node will return responses accordingly. CDN is a
well-developed technique for users to enhance the speed of reaching their target
web sites or getting their needful contents. There are four main components in
CDN namely surrogate servers, routers, redirection server and accounting logs
[1]. The functions of these four components will be outlined in section 2.
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Honeypot is a fast developing security technology nowadays. However, there
is a serious problem with honeypot in that it is difficult to create good honey-
pot to lure hackers, especially sophisticated hackers whose possess techniques to
penetrate into systems with highly confidential contents. In this respect, honey-
farm, a type of new and advanced honeypot, is focused on. Honeyfarm is made
up of a large number of honeypots, which provides services as hackers need. Tra-
ditional honeypots provide nothing or only some fake information so that they
cannot attract hackers to show their behaviors efficiently. On the other hand,
honeyfarm will simulate everything as the hackers want to attract them to stay
on that fake environment. The closer to the real environment the honeyfarm is
able to imitate, the more possible the honeyfarm can lure the hackers to stay
on with them, and as a result, the more information about hackers’ behaviors
researcher are able to obtain. Since people who have joined in the CDN ser-
vices would be redirected to the topologically nearest web site in terms of the
topological proximity, the routing mechanism of CDN can also be used for the
honeyfarm to redirect hackers. Similarly in a honeyfarm, when a hacker is de-
tected, some lookup requests will be sent to the honeyfarm to select the most
appropriate honeypot to deliver the emulated responses to the hacker. If the
honeypot can provide what the hacker is interested in, then the hacker will be
redirected to the selected honeypot. Otherwise, the hacker will be given some
limited privilege such as limited bandwidth to access to their real target. In the
meantime, honeyfarm will download all the content of the target (i.e. the whole
web site) to its fake environment much faster than hackers can obtain so that
it can simulate the hackers’ target before the hacker reaches his goals. After
the honeyfarm completes its simulation, the hacker may just get a part of the
contents that he is interested in. Then the honeyfarm will redirect the hacker to
what the honeyfarm has imitated. Afterward, the hacker will slump into the fake
service and will take actions without knowing that his behaviour is being ob-
served and recorded. However, there are transparency and centralized problems
in CDN redirection mechanism, CDN should be improved if it is to be used as
a redirect mechanism for honeyfarm. Moreover, because CDN can be utilized to
reduce the latency [2] when redirecting hackers to the appropriate honeypot, the
honeyfarm can answer their requests more successfully and quickly than the tra-
ditional honeyfarm redirection mechanism. The rest of the paper introduces the
ways to modify CDN and use it to redirect hackers to the honeyfarm. The paper
is organized as follow. Section 2 focuses on the concept of CDN and its redirec-
tion mechanisms. Section 3 introduces the concepts of honeypot and honeyfarm.
Section 4 outlines the use of CDN to build the honeyfarm and the realization of
the redirection of the honeyfarm by adding CDN theory into the conventional
honeyfarm redirection mechanism. The paper is concluded in Section 5.

2 An Overview of Content Delivery Networks

Content Delivery Network is a kind of dedicated network optimized to deliver
specific contents such as static web pages, transaction-based web sites, streaming
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media, or even real-time video or audio [3]. Generally speaking, CDN mainly
consists of four basic components [1]:

– Surrogate servers, which is used to store the contents of the original servers
like mirror web sites. Clients can get the contents from the topologically
nearest surrogate servers according to the allocation policies of CDN.

– Routers, which act as the redirectors to allocate clients to the topologically
nearest surrogate servers according to some predefined policies.

– Request-routing infrastructure (RRI), which are diversity of components re-
sponsible for distributing the clients’ requests from the original servers to
the surrogate servers.

– Accounting logs, which have the functions of delivering system logs and
accounting information to the original servers.

The CDN surrogate servers and the RRI are deployed throughout the Internet
which Web publishers can make use of to distribute their contents. CDN first
emerged in 1998 whence the web servers cannot meet the requirements of trans-
missions over long distances. Before CDN came forth, ISPs used another kind of
technology, the proxy, to cache the contents so that they can serve their clients
more efficiently. However, there are two drawbacks in proxy technology. First, if
the proxy is not appropriately and immediately updated, the clients will receive
just outdated data. Second, bottleneck becomes another serious problem due to
the exploding growth of the number of Internet clients. CDN is able to solve these
two problems by distributing clients’ requests to an appropriate CDN node in
terms of the topological proximity between the client and each CDN node that
can serve clients as their origin destination can serve. Moreover, CDN essen-
tially focuses on more advanced issues than proxies. While ISPs use proxies to
store the most frequently used and most recently requested contents, CDN not
only caches these contents, but can also store secure contents, stream contents
and dynamic contents. CDN makes use of two primary technologies, which are
intelligent wide area traffic management and cache. The function of intelligent
wide area traffic management is to direct clients’ requests to the optimal site
according to the topological proximity. Two types of technologies, DNS (domain
name service) redirection and URL rewriting, are currently used to direct clients’
requests to the appropriate server. In DNS redirection, the DNS server performs
the mapping between a surrogate server’s symbolic name and its numerical IP
address. The following steps describe the ways to locate an appropriate surrogate
server for the clients:

– The user sends a DNS query to the local DNS server, then the local DNS
server routes the query to the CDN’s request-routing infrastructure, which
is called RRI.

– The RRI asks each surrogate server to examine and measure its particular
route to the local DNS server.

– Each surrogate server sends measurement results to both the local DNS
server and the RRI. Additionally, it also sends other criteria to the RRI,
which lets the infrastructure compare each server’s topological proximity
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with the local DNS server. Server measurements are based on network met-
rics such as latency, packet loss, and router hops from surrogate servers
to requesting entities and feedback from a pool of surrogate servers, from
which the proximity-load-threshold algorithm selects the least-loaded surro-
gate server [1].

– The RRI compares all the previous measurements and chooses the most
appropriate surrogate server to deliver the requested content. In the mean
time, RRI sends a DNS response to the user’s local DNS server.

– The user’s local DNS server sends that response to the user.

Generally the DNS-based CDN service can be categorized into two types, which
are full site CDN and partial site CDN. For full-site content delivery, the RRI
redirects all the requests from the clients through the DNS to a CDN server.
On the contrary, partial-site CDN delivers only embedded objects such as web
page images from the corresponding CDN. With partial-site content CDNs, the
surrogate server fetches only non-cacheable objects from the origin web server,
which can reduce the load on the site’s content generation infrastructure and the
data that the surrogate server should retrieve from the origin server. Because
of the frequently changing embedded objects, partial-site deployment typically
achieves better performance [1]. While most CDNs use DNS-based mechanism to
redirect their clients to the appropriate server, some also used ‘rewriting URL’ to
fulfill the redirection. To achieve this goal, the origin server will rewrite the dy-
namically generated pages’ URL links. For instance, with a web page containing
an HTML file and embedded objects, the web server would amend references
to embedded objects so that the client could get them from the most appro-
priate surrogate server by calculating and comparing the topological proximity
between each CDN node and the clients. CDNs offer special scripts that trans-
parently parse Web page content and cover for embedded URLs. Additionally,
URL rewriting is also called content modification because CDNs use it in just
one of the following two ways [1]:

– Statically. The Web server modifies content and rewrites embedded URLs
before the content is stored on the origin server and made available to clients.

– Dynamically, the content is amended according to clients’ demand in real
time. For dynamic Web pages, the basic drawback of URL rewriting is that
it imposes an important performance overhead as scripts are ought to be
continually executed.

Besides intelligent wide area traffic management, cache is another pivotal issue
in CDN. Cache is a generic way of providing web server function without clients’
having to know application-specific details. There are millions of cache nodes
deployed in the entire Internet by CDN, all of which save the useful contents
that can be provided to the local clients to decrease the burden of the origin
servers. Two simple and popular policies will be utilized by cache to determine
which content need to be stored and which need to be expired. The first one is
the least frequently used standard. In this standard, objects or contents, which
are least frequently used, should be eliminated in order to provide space for
new objects. The second one is the least recently used standard which evicts
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objects that have not been accessed for the longest time. When a cache receives
a request for a web object, it first checks whether the copy of this web object is
in the cache. If so, the cache sends a header request to the web server to see if
the content has changed. If the object is fresh, the cache fulfills the request by
sending the client a copy of the object. If not, the cache makes a request to the
origin server to fetch the content that its clients need, then it fulfills the client’s
request and returns the appropriate response.

3 Overview of Honeypot and Honeyfarm

In this section honeypot will be first introduced followed by the concept of honey-
farm. Honeypot is a security resource whose value lies in being probed, attacked
or compromised [4]. The goal of honeypot is to research and explore hackers’ be-
haviors such as hackers’ actions, motives, tools, targets and tactics. To achieve
this goal, honeypot will be deployed around the Internet, beside the organization
or in the intranet. For instance, when a hacker is lured into a honeypot, it will
provide hackers the needed information as much as it can so that hackers would
show their behaviors on the honeypots. But it has to ensure that the hackers
don’t know they are being inspected by researchers. After the hackers have done
something on the honeypots without knowing the detection, researchers can ob-
serve and record the activities and behaviors of the hackers and through the
analysis of these information, new prevention tools such as new rules in the rule-
based IDS can be devised. Based on the level of interaction that honeypot can
provide to the hackers, honeypots can be categorized into three different types,
whose functions are increased according to the level of interaction between the
honeypots and the hackers:

– Low-interaction honeypot. As the name implies, low-interaction honeypot is
easy to install and simply simulates a few services. The attacker is limited to
interact with these predefined services (such as fake ftp or http service). The
primary value of low-interaction honeypot is the detection, especially de-
tection of those unauthorized connection attempts and unauthorized scans.
The disadvantage of low-interaction honeypots is that they cannot provide
detailed information about hackers in which researchers may have interests.
But its simplicity is also its advantage. Since low-interaction honeypots are
simple, they have the lowest level of risk. For there is little function provided
in the low-interaction honeypots, there is less to go wrong. Additionally, be-
cause low-interaction honeypots do not offer real operating system for the
hackers to interact with, this kind of honeypot cannot be used to harm,
attack or monitor other computers and systems in the Internet.

– High-interaction honeypot. On the contrary, high-interaction honeypots pro-
vide real operating system and emulate the service as real as hackers need
so that they can lure unauthorized people to connect to them, especially
sophisticated hackers. High-interaction honeypots are actual systems with
full-blown operating systems and applications. They are primarily used for
research purposes. Since a real operating system is provided, the level of risk
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is much higher than low-interaction honeypot. But with high-interaction
honeypots, researchers can discover new tools, identify new vulnerabilities
in operating systems or applications, and learn how hackers communicate
among one another.

– Medium-interaction honeypot. Medium-interaction honeypots are easier to
deploy and install than high-interaction honeypots but more complex than
low-interaction honeypots. They mainly provide the following four functions
to clients [4]:
1. Actually capturing worm payloads or attacker activity.
2. To learn what happen after attackers gain access to a system.
3. To capture their toolkits.

Although medium-interaction is able to get a greater amount of informa-
tion than low-interaction, it inevitably brings a higher level of risk and more
complexity to its clients.

Honeyfarm is one type of high-interaction honeypot. It consists of a cluster
of honeypots which are deployed in the same location or all over the Internet
and used to simulate what hackers want as real as possible so that they can
attract hackers, especially sophisticated hackers, to intrude into them and show
their behaviors without knowledge about the inspection. For example, when an
unauthorized person is detected to connect to some resource, the resource will
send the request to the honeyfarm to ensure whether those needed contents
have been simulated in the honeyfarm. If so, the person will be redirected to the
honeyfarm. If not, the honeyfarm will first emulate what the person is interested
in and then redirect the person to it. Currently there are two types of honeyfarms:

– All the honeypots in the honeyfarm are deployed all over the Internet, beside
those organizations that have joined the honeyfarm mechanism just like CDN
nodes and permit researchers to use their resource to lure hackers.

– All the honeypots in the honeyfarm are deployed in one or some locations
so that administrators can spare more resources to manage them. In this
type of honeyfarm, organizations won’t deploy honeypots on their networks.
Instead, they will simply deploy a hardware device that monitors unused
IP addresses, similar to some kind of high-interaction honeypot tool called
honeyd [4], and redirects all attacker traffics to a single cluster of honeypots
by some routing mechanism.

Traditionally, both types of honeyfarm use layer 2 VPN to redirect the hack-
ers. In this paper, to utilize the advantages of CDN, the honeyfarm is constructed
in the second way outlined above, deploying all the honeypots all over the Inter-
net in the way in which normal CDN nodes are constructed. In the honeyfarm
mechanism, one of the most important technologies is redirection since all the
unauthorized traffic ought to be redirected to the honeyfarm without hackers’
detection. To achieve this goal, researchers have find a way to distinguish autho-
rized and unauthorized access. After identifying the hackers, they can use the
appropriate redirection mechanism to route them to the honeyfarm and record
their behaviors. There are three primary requirements in the redirection of hon-
eyfarm:
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– Transparency. Transparency is the most important requirements for redirec-
tion since if hackers discover that they have been inspected, they will abort
their connection to the honeypots. Then researchers are not able to record
the hackers’ behaviors and the honeyfarm will lose its value as a security re-
source. Furthermore, because the clients’ system can communicate with the
honeyfarm without any restriction, if hackers detect the inspection, it will
change its policies and utilize the honeyfarm to harm the clients’ systems.

– Upgrade. Besides transparency, upgrade is also an important requirement for
the honeyfarm because the clients who have joined in the honeyfarm services
always update their contents in their web sites. To emulate the honeyfarm
as truly as possible, researchers should also follow the clients who have join
in the honeyfarm service and update the contents in the honeyfarm in time.

– Latency. Speed of connection to the honeyfarm is important. With the fast
growth in the number of hackers, the conventional honeyfarms impose large
latency between the honeyfarm and the hackers, which may not only make
hackers lose the patience to wait for the responses and quit.

With all these requirements, it can been seen that CDN is suitable to be used
as the redirecting mechanism for honeyfarm.

4 A New Redirection Mechanism in Honeyfarm

To ensure the success of honeyfarm, the most important aspect is to redirect
hackers to the honeyfarm transparently. Currently there are three kinds of redi-
rection mechanisms, namely DNS-based redirection, TCP handoff and HTTP-
based redirection. The DNS-based redirection and the HTTP-based redirection
cannot route the suspected traffic to the honeyfarm transparently, and the TCP
handoff cannot meet the upgrade requirement of the honeyfarm. So in traditional
honeyfarm, layer 2 VPN, is used to implement the transparent redirection. How-
ever, since layer 2 VPN is one type of access-centralized redirection mechanism.
When creating or removing a VPN, the client needs to request a VPN manager
to permit this kind of request [5]. So it will create latency with the growth of
the number of hackers and their traffic, which is called centralized problem. Ide-
ally a client’s request should not be directed to a centralized manager to get
the response. In this paper, the redirection mechanism of CDN (as described in
section 2) is modified and combined with DNS-based redirection mechanism to
route the unauthorized traffic transparently and efficiently. It is well known that
the primary goal of CDN is to redirect clients to the particular servers to reduce
the Internet traffic. But the routing mechanism of CDN may not satisfy the
transparency requirement of the redirection in honeyfarm. Furthermore, when
redirecting suspected traffic, RRI needs to compare all the topological proximity,
which still give rise to the centralized problem. In this paper, in order to satisfy
the transparency requirement, we propose to integrate RRI, local DNS server
and the proxy cache into one simple component, which is called a redirection
server. To eliminate the centralized problem, all the honeypots are organized
using the CDN architecture and the redirection servers are organized in a tree
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structure, in which each redirection server is distributed to compare the topo-
logical proximity between each honeypot in the honeyfarm and the redirection
server. This way, the information about honeypots can be easily updated. Hon-
eypots can send their own information about the load condition and the content
they possess to the leaf redirection server that monitors the domain in which
they are located.

In the following, we will outline the way to identify potential hackers the way
to use the routing mechanism in CDN to meet the requirements of the redirection
in honeyfarm. To provide this kind of routing mechanism, the structure of the
collection of redirection servers is described briefly, then the ways the redirection
server work and the process of redirecting hackers in the honeyfarm will be pro-
vided. In order to facilitate the operations of the honeyfarm more smoothly and
efficiently, researchers should identify unauthorized access as soon as possible. In
the honeyfarm mechanism, three methods are combined to identify the suspects:

– Monitor those unused IP address in the intranet. Because these IP addresses
are not used, anyone who tries to access to them or scan them are labelled
as suspects.

– After the suspects are being identified, rule-based IDS is used to identify
hackers. Since rule-based IDS technology is well developed, researchers can
easily find suspects and redirect them to the honeyfarm.

– Lastly, firewall is used to find suspected connection.

All these systems are called mid-system because they are not the hackers’ final
targets. Instead, the hackers just utilize them to harm their ultimate targets
and a huge number of sophisticated hackers are using this kind of method to
access their target. In this paper, only this kind of hackers is considered. After
identifying the hackers, the CDN should be constructed in that a collection
of redirection servers are constructed as a tree instead of RRI and local DNS
servers in CDN and deployed all over the Internet. This kind of deployment is
considered as a CDN network and the CDN redirection mechanism is modified
to route unauthorized traffic. The whole redirection service in the honeyfarm
relies on two main components, a hierarchical collection of redirection servers
and the mechanism of the redirection server itself.

Before we introduce how the redirection mechanism of CDN is modified to
implement the redirection in the honeyfarm, the hierarchical collection of redi-
rection servers should be introduced. In order to handle the routing request in
a distributive manner, the collection of redirection servers can be organized as
follow. The whole Internet is partitioned into several domains, each of which is
monitored by one and only one redirection server. The distributed redirection
servers are organized in a tree structure. The node at the lowest level of tree
is the leaf node. Each leaf node is a redirection server, which monitors all the
honeypots in one domain and stores the information about the honeypots in this
domain. According to the way in which the Internet is divided, each leaf redi-
rection server in the same domains is aggregated into one server, which is called
the father node. Recursively all the leaf nodes will be aggregated into one single
server, which monitors the entire Internet. This server is called the root node
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for the tree [2]. Each node in this tree is a redirection server that helps people
redirect risky traffic to the honeyfarm. For example, the whole Internet is di-
vided into six parts corresponding to the six continents, which are Asia, Europe,
North America, South America, Oceania and Africa. Each part is further subdi-
vided into smaller parts. The more parts the world each part is divided into, the
more resources have to be consumed to construct the collection of redirection
servers, but the less comparing work that each redirection server have to do and
the more efficient the redirection. Figure 1 shows the design of the collection
of the redirection servers. The root server monitors the entire Internet, the six
servers in the second layer monitor the six parts. Additionally, in Figure 1 not
only is the world divided into six parts, but also are these six parts divided into
some more detailed parts, each of which is also monitored by one leaf redirection
server to distribute the handling of the requests, either from the mid-systems or
from other redirection servers.

To simplify the architecture of the collection of the redirection servers, five
functions should be integrated into the leaf redirection server.

1. Answer incoming requests and sending requests to other servers in the tree.
2. Manage the local information for the honeypots in its own monitoring do-

main.
3. Execute the functions of the local DNS server for the web sites in its moni-

toring domain.
4. Compare the topological proximity between each honeypot in their inspect-

ing domains and the hacker.
5. Fetch the contents that the clients need and act as if they are from the

primary destination.

Fig. 1. The design of a collection of redirection servers.
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While the leaf redirection server should perform the five functions, other redi-
rection servers just need to perform function 1 and function 4. When a client
sends a request to the local redirection server to get contents, the following three
steps will be processed to select the optimal honeypot:

– The local redirection server computes and compares the topological proxim-
ity from each honeypot, which it monitored, to itself, chooses the optimal
honeypots and sends its IP address to its father node.

– In the meantime, the local redirection server sends a request through its
father node to the whole tree of collection of the redirection servers, asking
all the leaf nodes to select the optimal honeypots, relative to the client, in
their domain, and return the results to their father node.

– The father nodes compares all the results, chooses the optimal honeypot’s
IP address and sends them to their father nodes. Recursively, the root redi-
rection server will find out the most appropriate honeypot for the local redi-
rection server and send the measurement result to it.

For the design of the redirection servers, the DNS-based redirection can be used
to route the suspects to the honeyfarm transparently. It is the duty of the client-
side redirection server to maintain the redirection transparency, which is achieved
by not displaying the address of the honeypot to the client browser. Instead,
by modifying the address of the honeypot provided to the client browser, the
redirection server can make the clients believe that they get the contents in
which they show interested from their origin target. There is no way to find out
the address of the honeypot when the redirection service is used.

Additionally, before describing the redirection process, the following steps
outline the general processes of the DNS-based mechanism. When an ordinary
client requiring some contents from a web site, there are two steps in the com-
munications between the client and the web site:

– The client’s system sends a request to the local DNS server to resolve the
domain name into the IP address.

– The resolved IP address is returned to the client by the local DNS server.
Then the client communicates with the web site by launching requests (i.e.
HTTP requests) to the web site server and gets back the responses.

In the honeyfarm, to redirect the clients, the local DNS server can modify the IP
addresses that the local DNS server returns to the client to fulfill the redirection.
Compared with the local DNS servers, redirection servers mentioned above also
can fulfill their redirection by modifying the resolving IP addresses and return
it instead of the real ones.

Considering those hackers who are using some mid-systems, if one was de-
tected to try to penetrate into a protected system illegally by a mid-system, the
whole process of the redirection is progressed in the following five steps when
the mid-system receives requests from the hacker:

– The mid-system sends a request to its local redirection server to resolve
the hackers’ destination (usually a domain name) into an IP address, which
is the guidance for the mid-system to access to the hacker’s target. Since
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the local redirection server will send back its own IP address to the client
browser instead of the real IP address of the hacker’s final target, the hacker’s
following HTTP requests will be redirected to the local redirection server.

– The redirection server selects the optimal honeypot for the hackers by ana-
lyzing the hacker’s HTTP requests, comparing all the topological proximities
between each honeypot and the hacker.

– If the optimal server exists, the redirection server sends the hacker’s requests
to this selected honeypot and the honeypot then returns the appropriate re-
sponses to the local redirection server in terms of the hacker’s requests. Upon
receiving the responses, the local redirection server falsifies the responses as
if these responses were sent back to the hacker by the hackers’ origin desti-
nation.

– If there is no honeypot that has simulated the hackers’ destination, the redi-
rection server will keep the hackers to stay on them, give them some privilege
such as a limited bandwidth to connect to the Internet. In the meantime,
the honeyfarm emulates the needed environment. When the emulation is
completed, the hacker will be redirected to the honeyfarm by sending the
IP address of the emulated environment to the redirection server, then the
same communication process between the local redirection server and the
chosen honeypot will be implemented as the third step.

– After the local redirection server gets those required responses (i.e. the con-
tents that hackers are interested in or some answers for the hackers’ requests),
it will send them to the hackers.
Because the redirection server is distributed throughout the Internet and

organized as a tree, the task of comparing and computing the topological prox-
imity between hackers and each honeypot in the honeyfam can be distributed
to many redirection servers, which enhances the speed of hackers’ accessing to
the honeypot. This then can remove, or at least decrease to a certain extent,
the centralized problem in the traditional honeyfarm so that the latency in the
connection between the hackers and the honeyfarm is reduced. Ultimately, each
honeypot in the honeyfarm is directly managed by one and only one leaf redi-
rection server. When the information about a honeypot is updated, for instance,
its load condition is changed or its emulated contents are refreshed, it can imme-
diately ask its manager (the redirection server) to update the information. This
way the requirement for update can be satisfied.

5 Conclusion

Honeyfarm is a newly developed concept. It is some type of high-interaction hon-
eypot, which not only protects the web sites from being intruded in illegally, but
also helps researchers to study hackers’ behaviors efficiently, especially new and
advanced behaviors. In order to direct hackers away from those protected web
sites and redirect them into the honeyfarm, redirection mechanism is considered
as one of the most important aspects that should be dealt with by researchers. In
this paper, a distributed redirection mechanism is added into the traditional hon-
eyfarm to redirect the risky traffic to the honeyfarm transparently. Additionally
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the distributed redirection mechanism can reduce the load consumption of the
honeypots, compared with the traditional redirection mechanism of honeyfarm
in the centralized way. There are some future research direction in this topic such
as the performance issue of the redirection mechanism and the issue of proxy
caches. A possible extension of the redirection mechanism which combines URL
rewriting to DNS-based is worth studying. Transport-layer requesting routing
and application-layer request routing are two popular URL rewriting mecha-
nisms that can be integrated with DNS-based requesting routing to not only
redirect the suspected traffic to the honeyfarm, but also improve the accuracy
of selection of the appropriate honeypot [7].
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Abstract. Content protection mechanisms are intended to enforce the usage
rights on the content. These usage rights are carried by a license. Sometimes,
a license even carries the key that is used to unlock the protected content. Unfor-
tunately, license protection is difficult, yet it is important for digital rights man-
agement (DRM). Not many license protection schemes are available, and most
if not all are proprietary. In this paper, we present a license protection scheme,
which exploits tamper-resistant cryptographic hardware. The confidentiality and
integrity of the license or parts thereof can be assured with our protection scheme.
In addition, the keys to unlock the protected content are always protected and
stored securely as part of the license. We verify secrecy and authentication as-
pects of one of our protocols. We implement the scheme in a prototype to assess
the performance.

1 Introduction

In a digital rights management (DRM) system, we use a license to specify the rights of
a user on digital content [7]. For example, a commercial software license could restrict
the execution of the licensed software to a particular number of uses. We must ensure
the integrity of this information, so that the usage rights can be enforced correctly.

A license often carries the key to unlock the protected content. Therefore, we must
ensure the confidentiality of this key, so that a dishonest user cannot access the con-
tent without abiding by the license. Additionally, the license can also carry metadata
of the content, which may be as valuable as the content itself because metadata is crit-
ical for efficient content management. For example, the URI of the film. To ensure the
availability of the film, the integrity of the URI must be protected.

Sometimes, we must ensure the confidentiality of some license information so that
it cannot be accessed by any unauthorized users. For instance, a bank but not a content
distributor can access a user’s payment information specified on a license, e.g. credit
card number. Therefore, the license, just as the content, requires adequate protection.

Unfortunately, license protection does not attract as much attention as content pro-
tection. There are only a few license protection schemes available, and most if not all
are proprietary. Our main security objectives are to ensure confidentiality and integrity
of a license or parts thereof, so that keys and metadata can be protected.

In addition, we would like to enforce different usage rights on different parts of the
content. For instance, a patient record contains sensitive information about a patient.
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We want to protect and share this information by using different keys. The doctor is
issued all the keys to access the entire patient record, but the insurance agent is only
issued the keys needed to access insurance related information. To protect the patient
record from being misused, we need to protect these keys.

In this paper, we propose a license protection scheme using a key tree and a tamper-
resistant hardware token with which we are able to achieve the aforementioned objec-
tives. A hardware token provides a tamper-resistant environment for storage and for
cryptographic operations; while a key tree grants us the flexibility to protect and share
a license and content.

Our contributions can be listed as follows:

1. We propose a license protection scheme using a key tree and a hardware token,
which is able to protect the license or parts thereof and content parts.

2. We perform an analysis of our protection scheme to justify its security properties.
3. We implement and evaluate the license protection scheme by using some off-the-

shelf software tools and a Java iButton.

We have applied our license protection scheme according to a number of usage
scenarios. To explain our approach, we choose a scenario, where a provider (e.g. NYSE)
issues a license that restricts access of brokers (i.e., paid subscribers) and normal users
to specific information on stock prices.

The organization of the remainder of the paper is as follows: Section 2 lists the se-
curity requirements. Section 3 briefly explains LicenseScript. Section 4 discusses our
license protection scheme. Section 5 explains our prototype implementation. Section 6
reports on a performance evaluation of the prototype to justify the applicability. Sec-
tion 7 briefly explains some related work. Finally, section 8 concludes and suggests
future work.

2 Security Requirements

We assume that some of the system components can be trusted. This is more or less
realistic with consumer electronic (CE) devices, but much less realistic when working
on personal computers. In particular, we assume that the application interprets a license
correctly. We treat this trusted part of the application as a reference monitor [13]. For
example, as soon as the license expires, the application stops rendering. However, a
malicious application can still cheat by tampering with the license. Therefore, we define
the following requirements for our license protection scheme:

Requirement 1 License Integrity: The application must verify the integrity of the li-
cense when it accesses the license.

Requirement 2 Token Interaction: The application must interact with the hardware to-
ken to access the license and content parts.

Requirement 3 Key Confidentiality: The storage keys for accessing the license and con-
tent parts must be hidden from the application.

When these requirements are fulfilled, cheating by tampering with the license will
be difficult.
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3 LicenseScript License

In this section, we discuss our licensing language, LicenseScript. The language is based
on multiset rewriting [2] and logic programming [11]. The reader may refer to our
previous work [4] for more detailed information.

A license has the following form:

license(Content,Clauses,Bindings)

Here, Content is (a link to) the content to be protected; Clauses is a Prolog pro-
gram that decides if the operations performed are allowed or forbidden; and Bindings
is a list of attributes that carry the status of the license and metadata of the content.

A clause has the following form:

Head :- Body_1,Body_2,...,Body_n.

Here, Head is the name and arguments of the clause, and the conjunction of
Body 1 up to Body n is the body of the clause.

We use stock price scenario (as discussed in section 1) for illustration. Figure 1 is
an example of a LicenseScript license that allows a broker to view a stock price for 10
times. The license also allows the provider to reset the number of times the stock price
is viewed. Finally, the provider can update the stock price.

In Figure 1, stock price is the link to the stock price; get value(X,Y,Z)
gets the value of the binding Y from the binding list X and unifies it with the variable Z;
set value(V,X,Y,Z) sets the value of the binding X from the binding list V with
the value Y and stores the binding into the binding list Z; is member(X,Y) checks if
element X is a member of set Y; get curr time(X) gets the current time and stores

01)license(stock_price,

02)[(canreset(S,B1,B2):-

03) S==provider,

04) set_value(B1,viewed,0,B2)),

05) (canupdate(S,B1,B2) :-

06) S==provider,

07) get_curr_time(T),

08) set_value(B1,updated,T,B2)),

09) (canview(S,B1,B2) :-

10) get_value(B1,subjects,Ss),

11) is_member(S,Ss),

12) get_value(B1,viewed,X),

13) get_value(B1,maxviews,Y),

14) X <= Y, X = X + 1,

15) set_value(B1,viewed,X,B2))],

16)[maxviews=10,

17) viewed=0,

18) updated=01012004,

19) subjects=[broker]])

Fig. 1. A license that restricts a broker to ac-
cess a stock price under 10 times.

license(stock_price,

[(canreset(S,B1,B2):-

cipher("CJ...", skey1)),

(canupdate(S,B1,B2) :-

cipher("XY...", skey3)),

(canview(S,B1,B2) :-

cipher("AB...", skey4))],

[maxviews=cipher("12...",skey4),

viewed=cipher("AC...",skey4),

updated=01012004,

skey1=cipher("89...",rootkey),

skey2=cipher("aC...",rootkey),

skey3=cipher("CC...",skey1),

skey4=cipher("KL...",skey2),

mac=cipher("XA...",rootkey),

subjects=[(provider,rootkey),

(broker,skey2),

(alice,skey4)]])

Fig. 2. Protected license of Figure 1, storing
the storage keys.
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it in X (primitives for other useful environmental data exist as well); viewed is the
binding that stores the number of times the stock price has been viewed; maxviews
stores the maximum number of times the stock price can be viewed; updated records
the time that stock price is updated; subjects is the access control list of sub-
jects that can view stock price.

In all clauses, S represents the subject making the query, B1 is the current set of
bindings and B2 is the set of bindings resulting from a successful query. A failed query
does not update the bindings. Clauses are triggered via external actions, for example
if the broker presses the view button on the user interface, the canview clause is
activated, with the appropriate settings for S (i.e., broker) and the bindings B1 and
B2.

4 License Protection Scheme

In this section, we introduce our license protection scheme. We use the architecture
shown in Figure 3.

Four components are involved: the application, reference monitor, token, and pro-
vider. The application is a piece of software that interacts with the token, and which is
used to access the license and the associated content. The reference monitor, which is a
trusted part of the application, coordinates the actions of the application and the license.
Each of these components has its own public/private key pair.

Two protocols support the communication between the components. Protocol A
is used to send a protected license to the application from the provider. The provider
generates the protected license and depending on its business model, decides which
part of the license needs to be protected.

Protocol B is used when the application starts using the content, and when the ref-
erence monitor interprets the protected license. We will elaborate these protocols later
in section 4.3. To use the license, the application must interact with the token and the
reference monitor.

Application

Reference
Monitor

Token

Provider

Protocol B

Protocol A

Public/Private
Key Pair

Fig. 3. Overall license protection architecture.

rootkey

skey2skey1
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Fig. 4. An example of key tree.
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We will explain our scheme as follows: Firstly, we look at protected storage mech-
anisms, which have inspired our license protection scheme in section 4.1. Secondly,
we show the structure of the protected license in section 4.2. Lastly, we illustrate the
protection scheme protocols that we have developed in section 4.3.

4.1 Protected Storage Mechanisms

Our license protection scheme is a protected storage mechanism. Protected storage is
defined by Pearson et al [12] as follows:

Protected storage is a service to the host platform in which the trusted plat-
form module (TPM) acts as a portal to confidential data stored on an arbitrary,
unprotected storage media.

Here, the TPM is a tamper-resistant cryptographic hardware module that is perma-
nently embedded in a computer. The TPM can provide secure storage for keys and other
sensitive information and it can perform cryptographic operations. Our license protec-
tion scheme uses an external hardware token instead of the TPM because this allows
user the freedom to move licenses and content between machines.

In this paper, we use protected storage in the form of a key tree. This is a mechanism
that has been used in secure group communication for key distribution and manage-
ment [10].

Figure 4 provides an example of a key tree. A child node is encrypted using the
storage key of the parent node. The root key is the “master key” for the whole tree.
If say, skey1 is needed to decrypt data1, the former will be decrypted using the
rootkey. Then, data1 can be decrypted with skey1.

For optimal performance, we use symmetric keys for the root key and the storage
keys. The root key is stored on the token when it is issued and never leaves the token.
It is sent to the user physically with the token. This root key is the secret key shared
between the token and the provider. All decryptions take place on the hardware token
for maximum security.

However, when sharing license information with another user, an actual storage key
(which has become the root key for a sub-tree) must be transferred to the user’s token.
For instance, we can allow a user to only access data3 and data4 by transferring the
actual storage key skey2 to the user’s token. The process of transferring this storage
key to another user’s token falls outside the scope of this paper. However, we believe it
can be achieved by using the TPM maintenance mechanism [12], which is intended to
transfer a storage key from a TPM to another TPM securely. In addition, we can exploit
a secure transfer mechanism, such as the mechanism proposed by Atallah and Li [1].
This deserves further study.

We can selectively deploy the information of the license with other entities by using
the key tree. For instance, we can share the information of the license encrypted by
skey3 and hide the other information from another user, by using the key skey2 as
the root key for that user.
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4.2 Protected License

By using a key tree, we can protect the license from Figure 1, as shown in Figure 2.
Here, cipher(X,Y) is a predicate that stores the encrypted value X (which looks
meaningless to human eyes) with the key Y.

Several additional bindings are needed to store the encrypted keys. For example,
skey1 is the encrypted key used to encrypt lines 03–04 of Figure 1, shown as
"CJ..." in line 03 of Figure 2. The length of "CJ..." is the same as the origi-
nal text shown in lines 03–04. We use the binding mac (line 15) to store the message
authentication code, i.e., "XA..." of the license, which can be verified by using the
rootkey. The mac can be used to ensure the integrity of the entire license.

The provider has the rootkey (on her token) so that the provider can ac-
cess all the encrypted data in the license. Therefore, the provider can execute clause
canreset, which resets the value of the binding viewed; clause canview, which
views the content of stock price; and clause canupdate, which updates the con-
tent of stock price. On the other hand, the broker can only execute the clause
canview, because her token only has the actual key skey2.

In addition, we use the keys in this license to protect some information (i.e., parts) of
the stock price. The license only allows an authorized user (with the correct key) to
access these protected parts. In Figure 2, broker, who is a paid subscriber, can access
the stock price information that is encrypted with key skey2 and skey4. The
user alice, who is not a paid subscriber can only access the information encrypted
with key skey4.

4.3 Protocols

In this section, we describe the protocols of our protection scheme: Protocol A (for
transmitting the license) and Protocol B (for using the license). For the reader’s conve-
nience, we list the notation we use to describe the protocols in Table 1.

Protocol A requires interaction between the hardware token, the application, and the
license provider. Its two main objectives are : (1) to send the protected license to the
application; and (2) to send the public key of the application to the token. The applica-
tion’s public key will certify the trustworthiness of the application when the license is
used.

A1. A → T : {A, P, “name”}
A2. T → A : {N, MAC(N, K(P,T )), T, A, P, “name”}

K+
eP

A3. A → P : {A, {N, MAC(N, K(P,T )), T, A, P, “name”}
K+

eP
}

A4. P → A : {Lic, {N + 1, A, K+
eA}

K+
eT

}

A5. A → T : {N + 1, A, K+
eA}K+

eT

A1 Application (A) asks Token (T ) to get the desired license (identified by “name”) from
Provider (P ). T must recognize P .

A2 T generates a fresh nonce N , a MAC of N (using the secret key shared with P ), K(P,T ),
concatenates N , MAC(N, K(P,T )) and identity T to the message received from A, en-
crypts the result with Provider’s public key K+

eP , and sends this to A. The fresh nonce is
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Table 1. The notation.

Symbol Meaning

A Application
R Reference Monitor (the trusted part of A)
T Hardware token
P Provider
D Data, i.e., license clause/binding or content
{X, Y } Concatenation of X and Y

{· · ·}K Message is encrypted by key K

Kst Storage key
Kss Session key
K(X,Y ) Shared secret key of X and Y

K+
eX , K−

eX Public and private key of X for encryption
K+

sX , K−
sX Public and private key of X for signature

S(M)
K−

sX
Signature of M with K−

sX

MAC(M, K) MAC of message M with K

Lic License
Key List of encrypted storage keys

necessary to prevent a replay attack. The secrecy of the message can be assured by encrypt-
ing it with K+

eP . The authenticity of the nonce (i.e., that it was produced by T ) is guaranteed
by MAC(N, K(P,T )). Therefore, a malicious application cannot fabricate the message of
step A2 without help of the token.

A3 A sends its identity and the received message from T to P .
A4 If P can decrypt the received message, P is implicitly authenticated by T . P increments N ,

concatenates N + 1 with A’s public key K+
eA and encrypts the result with T ’s public key

K+
eT . P sends this message and the protected license Lic to A.

A5 A forwards the encrypted message to T and stores Lic. The license can be stored securely
because its content is protected by a key tree.

B1. A → T : {A, Lic, MAC(Lic, K(P,T ))}
B2. T → A : {Kss1}K+

eA

B3. A → T : {Key, {D}Kst , “param”}Kss1

B4. T → R : {{Lic, D, S(D)
K−

sT
}Kss2

, {Kss1 , Kss2}K+
eR

}

B5. R → A : {D}Kss1

B6. A → R : {D′}Kss1

B7. R → T : {D′}Kss2

B8. T → A : {{D′}Kst}Kss1

B9. A → T : {Lic′}Kss1

B10. T → A : {MAC(Lic′, K(P,T ))}Kss1

Protocol B After Protocol A has finished, the application has the protected license.
Each time the license is used, Protocol B is run.

As stated before, the reference monitor is assumed to be the trusted part of the
application. We trust the reference monitor in the sense that it will correctly interpret
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each license. Also, we assume that the token has obtained, and trusts, the public key of
the reference monitor initially. The steps of Protocol B are:

B1 Application (A) wants to access the license. It initiates the interaction by sending to Token
(T ) its identity A, the license Lic and the MAC value of the license, MAC(Lic, K(P,T )).
If validation fails, T terminates the interaction and records the event.

B2 T verifies the integrity of Lic. If the integrity is violated, T terminates the interaction with
A, and A cannot access the content. We use secure audit logging to record this incident [6].
If the integrity is validated, T acknowledges A with a randomly generated fresh session key
Kss, encrypted with A’s public key K+

eA. Implicitly, the application is authenticated if the
application can read this message using its private key.

B3 A retrieves a list of encrypted storage keys Key needed for the required data DKst , and
sends it to T . The parameter “param” is used to identify the type of D, i.e., if D is a clause,
“param” is the name of the clause. This message is encrypted with the session key Kss to
ensure the authenticity of the session.

B4 Before sending the decrypted data D, two cases are considered:
B4.1 If D is a license binding, T checks it against the previously stored value to assure that

D has not been tampered with. If the check fails, the token terminates the transaction.
Otherwise, T performs application-specific updates on the binding value stored on the
token. For instance, the value of binding played times is incremented. In any case,
we log the binding values so that when T and A re-connect to P (Protocol A) say, for
a new license or content, T sends P the stored binding values, so that P can check if
the user has cheated [7]. If D is used for the first time, T will store it (T can trust the
integrity of D at the first time because D is always encrypted with a storage key).

B4.2 If D is a license clause or a content part, no checking is done due to the limited
resources of the token.

Then, T sends D and its signature S(D)
K−

sT
as well as the license Lic encrypted with a

new session key Kss2 to the reference monitor R. The new session key is encrypted with
the public key of R, i.e., K+

eR.
B5 R verifies S(D)

K−
sT

before interpreting the data D. Then, R sends D to A, encrypted with

the session key Kss1 . The encryption with Kss1 is to ensure the authenticity of the session.
B6 After A has used and updated D (i.e., D′ is generated), A sends D′ to R.
B7 R checks if D′ was updated correctly. If so, R sends D′ to T encrypted with their shared

session key Kss2 .
B8 T replies to A with the encrypted D′, i.e. {D′}Kst . T encrypts it with the session key Kss1

to ensure the authenticity of the session.
B9 A new license Lic′ is re-constructed by A. A asks T to regenerate a new MAC value for the

updated license Lic′.
B10 T sends the new MAC(Lic′, K(P,T )) to A to finish the final re-construction of Lic′.

Steps B3 to B8 may be repeated in a session for different types of data (i.e., license
clause, binding or content part) during the use of the license and content.

This completes the description of the protocols.

4.4 Formal Protocol Verification

We have used the protocol verifier CoProVe [8] to verify Protocol A. Basically, what we
needed to verify is that a malicious application would not be able to obtain the license
without the correct intervention of the token. It is well-known that design of crypto-
graphic protocols is error-prone, and that a great deal of published protocols have later
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been shown to contain errors prejudicing their safety. CoProVe helps to find possible at-
tacks and at proving that – under certain conditions – a protocol is attack-free. CoProVe
works by taking as input a specification of the protocol and a system scenario describ-
ing the roles involved in the protocol – in our case token, application and provider of
Protocol A – and by analysing all possible interleavings in presence of a malicious
intruder.

We adopt two reasonable assumptions to keep our scenario simple yet expressive:

1. The token knows the genuine provider. It is a practical assumption because the
token is dispatched by the provider.

2. The provider knows the genuine application. It is also practical because the provider
keeps a list of authorized applications that can access the license.

Specifically, we have verified the following properties:

1. Secrecy: A fresh nonce must only be known by the token and the genuine provider.
This is to prevent replay attacks.

2. Authentication: The malicious application and provider cannot impersonate the
genuine ones. Thereby, the malicious application cannot impersonate a genuine one
to decoy the token. We tested that a malicious application could not impersonate
the token.

To carry out the verification we had to set up a finite-state scenario (consisting of a
finite number of parallel sessions); this is the standard limitation of model-checking
approach to verification: while we have checked scenarios with two parallel sessions
(we are going to carry out tests with 3 parallel sessions as well) it is possible – though
unlikely – that hidden flaws are revealed only by analyzing scenarios with a higher
number of parallel sessions.

4.5 Security Analysis

In this section, we review the requirements of section 2 corresponding to our license
protection scheme.

Requirement 1 is satisfied by using a message authentication code. The verification
of the MAC value is performed on the token with the root key stored on the token (in
Protocol B step B1). Therefore, we can ensure the correctness of the MAC verification
because the secret key never leaves the token.

Requirement 2 is fulfilled if different parts of the content are encrypted by using
different keys stored on the license (in Protocol B step B3). Therefore, the application
must interact with the token continuously as long as the application accesses the content
and license. Our protection scheme is aimed for content that is short-lived, i.e., the
value of the content is reduced after a short period of time. For instance, stock prices.
Therefore, once the content has been decrypted and presumably saved in the clear, we
do not insist on communication with the token anymore.

Requirement 3 is satisfied. The keys stored on the license are encrypted. The decryp-
tion operations (on the keys, license clauses, bindings, and content parts) are performed
on the token (in Protocol B step B4). However, during sharing, an actual storage key
must be transferred from one token to another. This process is presumed secure by using
additional protocols [1].
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5 Prototype

In this section, we discuss a prototype implementation of our license protection scheme.
The objective is to establish the applicability, and at the same time to conduct some
performance evaluation. The prototype is built on a platform with an Intel Pentium 4,
256 Mbytes of RAM, and a serial port connection with the iButton version 2.2.

Token
(Java iButton)

Provider
(Java)

Socket

Serial

Port ECLiPSe

(Prolog)

Meta-Interpreter

Rewrite Rules

Application
(Java)

LicenseScript Interpreter

Fig. 5. The architecture and components of the reference implementation.

We use off-the-shelf software tools to implement the components of our prototype,
as shown in Figure 5:

1. The LicenseScript Interpreter is responsible for interpreting and calculating licen-
ses. It acts as a reference monitor. We have used the LicenseScript Interpreter from
our previous work [5] based on:
(a) ECLiPSe: To execute the Prolog code retrieved from the LicenseScript li-

censes.
(b) Meta-interpreter: To retrieve the clauses and binding values from the licenses

and to send these to the ECLiPSe Prolog interpreter.
(c) Multi-set Rewrite Rules: To interpret the rights operations performed by the

users via the application, for instance, play, copy, etc.
2. The Application is used to access the license and the associated content, while in-

teracting with the token. This is written in Java, using the iB-IDE API, Java Cryp-
tography Extension (JCE), and JavaCard Framework.

3. The Token is a Java iButton version 2.2. It has a higher physical security than
a normal smart card because the chip is physically protected by a stainless steel
cover, and it supports common cryptographic algorithms.

4. The Provider serves the protected license and sends it to the client via a socket
connection. This is written in Java using JCE and Java.net.

After implementing the prototype, we performed several performance evaluations
of the prototype.

6 Performance Evaluation

To verify the practicability of our license protection scheme, we perform several tests
on our prototype.
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From our previous experience, we know that the cryptographic operations on the
iButton are slow [6]. As it is used more frequently than Protocol A, we choose to eval-
uate the performance of Protocol B, in particular the two operations that involve the
iButton: (1) decryption of keys and data (includes license clause, binding and content
part) on different levels of a key tree, and (2) reconstruction of the license, which in-
volves encrypting the data and generating a message authentication code.

6.1 Test 1: Levels of the Key Tree

The depth of a key tree influences the performance of our license protection scheme.
For instance, to retrieve a license binding value, which is encrypted with a storage key
at level 10 of the key tree, the token has to perform 10 steps of symmetric decryption
(including the step to decrypt the encrypted binding value).

In this test, we measure the decryption time required at various levels, i.e., from
level 2 to 10 inclusively (level 1 is the root key). The final result obtained for each level
is the average of 5 repeated measurements. We run the test as shown in Figure 6.

The size of the data is less than 128 bytes. We found that it takes roughly 0.2 second
for DES decryption (with a 56-bit key) on the iButton, which is consistent with the
findings of our previous work [6].

We give a least square fitting (LSQ-Fit) formula to express the results of our mea-
surements:

t = 0.06± 0.02 + (111± 3)× l (1)

Here, t is the time in milliseconds required to perform DES decryption on the token for
level l on the key tree. l > 1 because level 1 is the root key.

The first conclusion is that the depth of the key tree should be kept as low as possi-
ble. From Equation 1, it takes approximately 1.22 seconds to decrypt data (of size less
than 128 bytes) at level 10 of the key tree. This will cause a delay to the system, which
is noticeable to the user.

6.2 Test 2: License Reconstruction

After the data is used and updated, we also need to re-encrypt the data on the token,
reconstruct the license on the application and generate a new MAC for the updated
license on the token.

We run a test, as shown in Figure 7. We use the same data size as before (100 bytes)
to perform our tests, and we run the same test for the same data 5 times. The final result
is the average value of these 5 tests.

We use an LSQ-fit formula to express our result:

t = 2256± 80 + (2.56± 0.28)× l (2)

Here, t is the time in milliseconds required to reconstruct the license for an updated
level l. The time required to reconstruct the license hardly depends on the depth of
the data in the key tree because only one DES encryption is performed on the iButton.



234 Cheun Ngen Chong et al.
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Fig. 6. The procedure for measuring the
time needed to perform data decryption
at different levels of the key tree.
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Fig. 7. The procedure for measuring the time needed
to perform data re-encryption on the token and recon-
struction license on the application, at different levels
on the key tree.

Therefore, the time required to reconstruct the license for arbitrary updated level in the
key tree is approximately 2.25 seconds.

We decompose the test into 8 parts, as shown in Figure 7, and measure the time
required for each part:

Parts 1, 3, 5, and 7. The Application transmits data to the iButton and vice versa. We have run a
test of the data transfer rate. It takes about 0.2 second to transmit less than 128 bytes of data,
as shown in Figure 8. Our data size is about 100 bytes. In total the communication between
the iButton and the application takes 0.8 second.
The graph shown in Figure 8 leaps drastically at around 120 bytes of data size. This is due
to the iB-IDE API. When the data is over 120 bytes, it will be split into chunks for transfer,
which causes more transmit time.

Part 2. This corresponds to Protocol B step B5. The iButton needs to perform a DES decryption
with a 56-bit session key on the message to retrieve the updated value, which takes about 0.2
second [6]. Then, the iButton encrypts the updated value with 56-bit storage key, and then
with the 64-bit session key. Therefore, this process takes in total 0.6 second.

Part 4. The application reconstructs the license with the encrypted and updated license data.
This takes less than 0.05 second.

Part 6. This corresponds to Protocol B step B7. Similar to step 2, it takes 0.2 second to decrypt
an encrypted message with the session key. The iButton generates a MAC for the new li-
cense. The iButton needs about 0.15 second to generate a hash of the data size less than
128 bytes [6]. The iButton needs 0.2 second to generate the MAC with the root key (DES
encryption of the hash). Lastly, the iButton needs 0.2 second to encrypt the MAC with the
session key. Therefore, this step takes in total 0.75 second.

Part 8. The Application reconstructs the license by embedding the new MAC. Similar to 4, the
application takes less than 0.05 second to finish this final step of license reconstruction.

To update and reconstruct a license, it takes in total approximately 2.25 seconds,
which is consistent with the overall measurement reported at the beginning of this sec-
tion.
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Fig. 8. The data transmission time from the application to iButton.

To conclude, the performance of the license protection scheme is acceptable from
the user’s perspective, if the data is small (less than 128 bytes). We may need a USB
interface and a bigger token memory to handle bigger data. This remains for future
investigation.

7 Related Work

In this section, we briefly discuss some related work. We investigate some XML doc-
uments security that XML-based rights expression languages exploit. We also discuss
some commercial license protection mechanisms by using hardware tokens.

Damiani et al [9] define and implement an authorization model for regulating ac-
cess to XML documents. They exploit the capabilities of XML, and define an XML
markup for a set of security elements describing the protection requirements of XML
documents. Bertino et al [3] share the objective of Damiani et al but they focus on con-
trolling the data access and dissemination of XML documents when there are XML
documents exchanges between two parties. They discuss main protection requirements
posed by XML documents and present a set of authorization and dissemination policies
to achieve the aforementioned purpose.

As far as we are aware, the listed authorization models only propose the repre-
sentation of the protected XML documents, e.g. new structure with new set of XML
markups, etc. There is no protection operation mentioned of how these protected XML
documents are produced and accessed.

Several commercial proprietary protection schemes using hardware tokens are avail-
able. We are only able to scratch the surface of these mechanisms by studying their
white papers. Most of them, e.g. Sospita (http://www.sospita.com/) and Wibu
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(http://www.wibu.com/) aim to protect software by executing parts of the code
on their proprietary hardware tokens. They can unlock this part of the software if the
user pays for it. These protection schemes also assume that (parts of) the application
that interfaces with the tokens are trusted.

Basically, protecting a license is only a secondary task in their scheme. Different
from LicenseScript, their licenses do not have a rich structure to express complex usage
scenarios. In addition, our license protection scheme, because of a key tree, allows
flexibility in sharing a protected license and content with other users.

8 Conclusions and Future Work

A license is an important element of digital rights management (DRM) because it: (1)
specifies a user’s rights on a digital content, (2) carries a content key, and (3) describes
metadata of the content. To protect these valuable assets, we propose a license pro-
tection scheme based on a tamper-resistant hardware token and a key tree. The key tree
provides flexibility and the hardware token provides tamper-resistance. We apply our li-
cense protection scheme to LicenseScript licenses. We analyze the protection scheme in
terms of security with respect to some common security assumptions. We also perform
a formal protocol verification using CoProVe.

We implement a prototype by using the Java iButton. To justify the practicability,
we perform several measurement on the prototype. We conclude that the protection
scheme is practical for a shallow key tree and small license size. We intend to extend
our protection scheme for protecting fancy media, e.g. music or film. We will also use
a USB connection for the iButton to improve the performance. Our scheme is intended
for the business model of “one token to one provider” due to the limited resources of the
token. However, we can extend our scheme to support “one token to many providers” –
by using the public key of the token, we can generate a new shared secret key for a new
provider. This remains as our future work.
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Abstract. In most current digital rights management solutions, digi-
tal license is bound to the content rendering device using its hardware
configuration. However, this strategy introduces an adaptive problem:
protected contents can’t be used any longer once the user changes the
hardware configuration. This paper focuses on the problem and presents
a feasible adaptive approach. With our approach, digital content buyers
can still smoothly render the bought digital content without any extra
operation when partial hardware replacement arises. Our approach bal-
ances the needs of customers’ hardware alteration and providers’ copy-
right protection on a reasonable level and increases the flexibility of DRM
system.

1 Introduction

With the rapid development of digital network technology, digital content such as
software, digital books, images, music and video can be easily duplicated without
loss of quality and can be distributed instantaneously and extremely cheaply
across the Internet to end-users. It becomes an immediate and important need
to control and manage copyright of digital intellectual property. Digital rights
management is regarded as a desirable solution to protect digital assets, control
their distribution and usage and protect the rights of both the provider and the
consumer.

In typical DRM solutions, digital content is always encrypted before distri-
bution and a valid digital license containing the content decryption key is needed
to render the content [1–7]. In order to protect the content from illegal copying,
digital license is always tied to a specific rendering device using the unique iden-
tification of its hardware configuration [5–7]. But this approach introduces an
unpleasing adaptive problem concerning the hardware alteration. Since the dig-
ital license is bound to a specific hardware configuration and the digital content
can only be used on the device with the same hardware configuration used for
creating the digital license, any change of the correlative hardware components
may result in failure to use the bought digital content forever [6]. This adaptive
problem apparently frustrates the consumers, deprives them of profit and causes
obstacles in the success of DRM. To protect the digital content providers’ profits
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and its users’ interests, an adaptive solution that balances the requirements of
both sides is under urgent need.

We propose a feasible adaptive approach by applying fault tolerance tech-
niques for the first time. In particular, we use secret sharing to enable partial
hardware replacement without the need for a license change. With our approach,
digital content buyers can still smoothly render the bought digital content with-
out any extra operation when partial hardware replacement arises. Our approach
balances the needs of customers’ hardware alteration and providers’ copyright
protection on a reasonable level and increases the flexibility of DRM system.
As compared to the other solutions shown in Section 2, our approach has the
following virtues:

1. The hardware alteration is transparent to digital content consumers and
there is a grace tolerance scope. Within this scope, the consumer can change
any of the hardware components of his rendering device and can still flow-
ingly use the bought digital content without any extra operation as before;

2. The digital license itself is adaptive to hardware modification and no hard-
ware configuration information is kept in the end-user’s machine. And thus
avoid the possible attack on the comparison point of the current approach.

The remainder of this paper is organized as follows. In Section 2, we analyze
some related works. Then, we present our hardware adaptive approach in detail
and prove that our scheme really protects rights of both providers and users in
Section 3. Next, some discussions about our approach are given in Section 4.
Finally, we present the main results of this paper in Section 5.

2 Related Works

Though there are many different DRM systems, the core idea is the same, i.e.,
using digital license to protect digital contents. After consumers get digital con-
tents, corresponding digital license must be acquired before using the digital
contents. Most DRM solutions are variations on a DRM reference architecture
shown in Fig. 1 [1].

There are three major components in the reference architecture: the content
server, the license server, and the client. The content server includes a digital
content repository, a product information database and a DRM packager. The
DRM packager has the functionality for encrypting and preparing content for
distribution through the system. Another task of the DRM packager is to create
descriptions of the rights that the content provider wants to allow the user to
exercise on the content. The content encryption key and rights descriptions are
sent to the license server. The license server includes a rights specification
repository, an encryption keys repository, an identities repository and a DRM
license generator. The generator is responsible for creation and distribution of
digital license, which contains information about the identity of the user or
device that wants to exercise rights to content, identification and encryption
key of the content to which the rights apply, specification of those rights and the
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Fig. 1. The DRM reference architecture.

information of license issuer. Components of the DRM reference architecture that
reside on the client’s side are the DRM controller, the rendering application,
and the user’s identification mechanism. The DRM controller is responsible for
the lawful use of digital content and requesting digital license from the license
server if no corresponding license exists in the client side.

Two strategies are often adopted in today’s DRM solutions to prevent digital
content from illegal copying. One is to bind the digital license to an extra secure
physical device such as a smart-card [2–4]. The other is to tie the digital license
to the rendering device by using the unique identification of its hardware config-
uration [5–7]. The advantage of these two strategies is that the digital content
can not be shared among different rendering devices and pirate actions such as
unlawful copy can be effectively controlled.

However, extra physical devices turn out to be unfriendly and unacceptable
for mass market considering the consequent added costs for content providers
and consumers, especially the digital content with lower value [8]. It becomes
worse if these devices are broken or lost. Hence, binding digital license to a
specific rendering device seems more reasonable. But this approach will lead the
consumer fail to use the bought contents if he changes the hardware configuration
of his rendering device [6].

To our knowledge, there is no solution to solve this adaptive problem in DRM
system used to protect general digital contents such as e-books. But there exist
two solutions in DRM system used to protect software. One solution to this
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problem is that the buyer contacts with the license server every time he changes
the hardware configuration of his rendering device and requests the digital license
once more, i.e. a license change is needed. This solution needs ongoing contact
between the user and the license server. The license server will have to save and
periodically update a record of the user and the device set. Users have to bear
the unpleasing additional contact with the license server and can thus be tracked
to some extent [9]. It will be worse if the user can’t connect his device to the
Internet in time.

Microsoft has adopted another approach to tolerate a certain degree of change
in a hardware configuration in its Product Activation techniques. In Microsoft’s
Windows XP, the information of hardware configuration at the time of product
activation is stored in the local host and the current hardware configuration is
compared to the original hardware configuration at each login. Windows XP can
run well if it judges that the hardware is not ”substantially different” [10–11].
However, this manner may not be secure since the original hardware configu-
ration is stored in the consumer’s machine and the comparison point may be a
hidden weak point, especially when we apply it to protect general digital content
such as e-book, digital music and movie etc.

3 The Adaptive Approach to Hardware Alteration

Our approach is based on the architecture described in Fig. 1. To realize our
adaptive object for the hardware alteration, a new approach to create digital
license and recover content decryption key using hardware configuration will be
employed in the architecture.

In the license creation stage, the license server fetches the corresponding
content decryption key, divides it into n shares and encrypts each share with the
relative piece of information of the hardware component received from the client,
and then encapsulates the encrypted shares with other necessary information in
a digital license file and delivers it to the client. In the key recovery stage, DRM
controller in the client will retrieve at least t valid shares from the digital license
file and reconstruct the content decryption key.

In this section, we will first give some notations used in our approach, and
then detail our approach step by step. Finally, we will prove that our approach
can really balance the needs of hardware alteration and copyright protection.

3.1 Notations

The notations in table 1 are used throughout this paper.

3.2 Our Approach

This section will describe the proposed adaptive approach to hardware alteration
for DRM in detail. In the approach, we apply fault tolerance techniques to
satisfy the needs of hardware alteration and copyright protection. In particular,
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Table 1. Notations appeared in our approach.

Notations Meanings

Kp, Ks Public/private key pair of the license server

k0 Shared secret key of the DRM controller and the license server

Ω Set of the hardware components selected to bind digital license

Ω0 Subset of Ω, consists of the hardware components that don’t exist

in the current rendering device

m(m0) Total number of the hardware components in Ω(Ω0)

ei The ith hardware component of Ω

ni Number of shares bound to ei, ni > 0

n(n0) Total number of shares bound to the hardware components in Ω(Ω0),

i.e. n =
∑m

i=1
ni, n0 =

∑
ei∈Ω0

ni

H(·) One way hash function

G(·) Key generation function

E(·, Kp), Encryption of a message with an asymmetric encryption algorithm

D(·, Ks) with public key Kp, and its relative decryption function

Ė(·, K), Encryption of a message with a symmetric encryption algorithm

Ḋ(·, K) with symmetric key K, and its relative decryption function

SigKs(M) Signature over message M with private key Ks

we adopt Shamir’s (t, n) threshold sharing scheme [12]. Instead of binding the
whole license or the content decryption key to the whole hardware configuration
identification, we obtain identities of corresponding hardware components in Ω,
split the content decryption key into multiple parts and tie them respectively to
these identifies.

In our scheme, we make the following assumptions:
(H1): The length of the key of the selected symmetric encryption algorithm in
our approach is not less than the length of the hash value H(·).
(H2): G(·) is an injective function, i.e. G(x1) = G(x2) if x1 = x2.
(H3): n > n0 ≥ 0.

As noted before, our approach has two stages: the license creation stage and
the key recovery stage. Details of these stages are described in the following.

License Creation. The process of license creation is described as follows (see
Fig. 2):

(1) The DRM controller of the client collects digital content’s identity CID,
corresponding payment receipt γ (set to null if it doesn’t exist) and n pieces
of hardware information h1, h2, · · · , hn of the hardware components in Ω in
current device, where h1, h2, · · · , hn1 is the information of the first hardware
component e1 ∈ Ω, hn1+1, hn1+2, · · · , hn1+n2 is the information of the second
hardware component e2 ∈ Ω, and so on, and computes n0 =

∑
ei∈Ω0

ni.
(2) The DRM controller computes the hash value of each piece of hardware

information, hc
i = H(hi + k0 + CID), i = 1, 2, · · · , n.
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Fig. 2. The process of license creation and information transfer.

(3) The DRM controller encrypts CID, n0, γ and hc
1, h

c
2, · · · , hc

n with the public
key of the license server: E({CID, γ, n0, h

c
1, h

c
2, · · · , hc

n}, Kp), and submits
the result to the license server.

(4) The license server decrypts the received information with its private key:
D(E({CID, γ, n0, h

c
1, h

c
2, · · · , hc

n}, Kp), Ks).
(5) The license server checks the payment receipt γ. If the digital content is not

free and the payment receipt γ is null or the receipt γ can’t prove that digital
content CID has been paid or the receipt γ is not generated by an authorized
credit organization such as a bank or retailer, the license server will kick off a
financial transaction and the client will securely receive and store a payment
receipt signed by an authorized credit party after the consumer pays for the
content.

(6) The license server verifies the validity of the digital content. If the verification
fails, a failure message will be delivered to the DRM controller and this
stage stops. Otherwise, the license server fetches the decryption key Kc of
content CID from its key repository and computes t =

[
n+n0

2

]
+ 1. Then it

selects a prime p such that Kc ∈ Zp, n < p and chooses n nonzero variants
x1, x2, · · · , xn, which are different to each other, and uses Shamir’s (t, n)
threshold scheme [12] to split the secret Kc into n shares s1, s2, · · · , sn.



244 Yinyan Yu and Zhi Tang

(7) The license server computes m1 = H(s1+x1+k0), · · · , mn = H(sn+xn+k0),
generates n symmetric keys k1 = G(hc

1), · · · , kn = G(hc
n) and encrypts the

concatenation of each share and its variant: se
i = Ė(si + xi, ki), i = 1, · · · , n.

(8) The license server stores se
1, · · · , se

n, m1, · · · , mn, t, CID, license version, the
information of the license server and the information about authorized rights
and conditions with other necessary information in a digital license file f ,
generates the hash value M = H(I), where we denote as I the whole infor-
mation in current digital license file f , signs the result with its private key
SigKs(M), and then appends SigKs(M) to f .

(9) The license server delivers the resultant digital license file f to the client.
(10) The DRM controller of the client verifies the digital license file by using

the license server’s public key, and then saves f in the local device. If the
verification fails, a resending request will be sent to the license server.

Key Recovery. Key recovery process can be regarded as the reverse process of
the license creation stage given above.

(1) The DRM controller fetches content CID’s digital license file f , verifies its
integrity and collects n corresponding hardware information h

′
1, h

′
2, · · · , h

′
n

with the same way adopted by step 1 of the license creation stage, and
computes hc′

i = H(h
′
i + k0 + CID), i = 1, 2, · · · , n.

(2) The DRM controller obtains se
1, · · · , se

n, m1, · · · , mn and t from f .
(3) The controller generates n symmetric keys k

′
1 = G(hc′

1 ), · · · , k′
n = G(hc′

n ) and
obtains n shares s

′
1, s

′
2, · · · , s

′
n and their corresponding variants x

′
1, x

′
2, · · · , x

′
n

by decrypting the encrypted values se
1, · · · , se

n: Ḋ(se
1, k

′
1), · · · , Ḋ(se

n, k
′
n).

(4) The controller computes m
′
1 = H(s

′
1 + x

′
1 + k0), · · · , m

′
n = H(s

′
n + x

′
n + k0),

and then compares these resultant values with m1, · · · , mn and concludes
that share s

′
i and its variant x

′
i valid if m

′
i = mi, i.e. s

′
i = si and x

′
i = xi.

(5) If there are at least t valid coordinate pairs (x
′
i, s

′
i), content decryption key

Kc can be reconstructed using Shamir’s (t, n) threshold scheme [12]. And
key recovery fails if there are less than t valid coordinate pairs.

In our scheme, each piece of the hardware information of the hardware com-
ponent ei ∈ Ω will be set to zero (or some other default value) if ei does not exist
in the current rendering device, i.e. hn1+···+ni−1+1 = · · · = hn1+···+ni−1+ni = 0
if ei ∈ Ω0. And when it comes to the rendering device that has more than one
hardware component of the same type, we will choose the one that operates cur-
rently in the license creation stage and will try each in the key recovery stage.
For example, if there is more than one hard disk in the rendering device, the one
where the running operating system is installed will be selected by our approach
in the first stage. And in the key recovery stage, each disk will be tried to get
the relative share.

3.3 Proof

We will prove here that our approach can really balance the needs of hardware
alteration and copyright protection. Without loss of generality, we assume:
(H4): 0 < n1 ≤ n2 ≤ · · · ≤ nm.
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Theorem 1 (Hardware Alteration). With the hardware adaptive approach,
we have the following conclusions if nm ≤ n− t holds:

i. As compared with the hardware configuration of the rendering device the
time the digital license is requested and generated, the consumer can change
any m− j + 1 or less hardware components of the rendering device without
influencing the use of the digital content;

ii. The consumer may fail to render the protected digital content if he changes
not less than m− j + 2 hardware components,

where 1 < j ≤ m satisfies: ⎧⎪⎪⎨⎪⎪⎩
m∑

i=j

ni ≤ n− t

m∑
i=j−1

ni > n− t
(1)

Proof. With n =
m∑

i=1

ni, t =
[

n+n0
2

]
+ 1 and assumption (H3), we can easily

conclude that such an integer j satisfying 1 < j ≤ m and inequations (1) exists
if nm ≤ n− t holds.

i. Assume that m− j + 1 or less hardware components of the rendering device
have been changed since the time the digital license is generated, at least
j−1 hardware components in Ω remain unaltered. According to assumption

(H4), at least
j−1∑
i=1

ni pieces of hardware information remain the same. We

can conclude from the stages of our adaptive approach that the system can

obtain at least
j−1∑
i=1

ni valid coordinate pairs. For

j−1∑
i=1

ni =
m∑

i=1

ni −
m∑

i=j

ni = n−
m∑

i=j

ni,

we can confirm from inequations (1) that
j−1∑
i=1

ni ≥ t. So the content en-

cryption key can be recovered using the (t, n) threshold scheme [12] and the
digital content can still be smoothly used.

ii. Assume that m − j + 2 or more hardware components of the rendering de-
vice have been changed since the time the digital license is generated, the
last m − j + 2 hardware components in Ω may be changed. That is to say,

m∑
i=j−1

ni pieces of hardware information used in creating the digital license

may be changed. According to assumption (H1) and (H2), different hardware
information will generate different key, thus a valid share and its variant can
only be recovered by using the same hardware information used to encapsu-

late them. So the system may fail to recover
m∑

i=j−1

ni valid coordinate pairs,
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i.e. perhaps the system can only recover n−
m∑

i=j−1

ni valid coordinate pairs.

Hence, the system may fail to reconstruct the content decryption key accord-
ing to inequations (1) and (t, n) threshold scheme [12] and the consumer then
fail to render the protected digital content. 	


Theorem 2 (Hardware Alteration). Suppose that each piece of the hardware
information collected in our approach can uniquely identify the corresponding
hardware component and n1 ≤ n− t, the following conclusions hold:

i. As compared with the hardware configuration of the rendering device used to
generate the digital license, the relative digital content can’t be used if the
consumer changes k or more hardware components in Ω;

ii. The digital content may be well rendered if the consumer changes not more
than k − 1 hardware components,

where 1 < k ≤ m satisfies: ⎧⎪⎪⎨⎪⎪⎩
k−1∑
i=1

ni ≤ n− t

k∑
i=1

ni > n− t

(2)

Proof. With n =
m∑

i=1

ni, t =
[

n+n0
2

]
+ 1, and assumption (H3), we can easily

conclude that such an integer k satisfying 1 < k ≤ m and inequations (2) exists
if n1 ≤ n− t holds.

i. Assume that the consumer has changed k hardware components in Ω of
his rendering device since the time the digital license is generated, m − k
hardware components in Ω remain unchanged. Since each piece of the hard-
ware information collected in the hardware adaptive approach can uniquely
identify the corresponding hardware component, i.e. different hardware com-

ponent has different hardware information,
m∑

i=k+1

ni pieces of hardware in-

formation collected by the system remain the same at best according to
assumption (H4). Since a valid share and its variant can only be recovered
by using the same hardware information used to encapsulate them (see the

proof of theorem 1), the system can obtain at most
m∑

i=k+1

ni valid coordinate

pairs. For
k∑

i=1

ni > n− t and
m∑

i=1

ni = n,
m∑

i=k+1

ni < t . So content encryption

key cannot be recovered according to (t, n) threshold scheme and the digi-
tal content cannot be used. We can obtain the same conclusion if the client
changes more than k hardware components in Ω of his device.

ii. Assume that the consumer has changed not more than k− 1 hardware com-
ponents of his rendering device since the time the digital license is generated,
the last m− k + 1 hardware components in Ω may remain unchanged. That
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is to say,
m∑

i=k

ni pieces of hardware information used in creating the digital

license may remain the same. We can conclude that the system may obtain
m∑

i=k

ni valid coordinate pairs. For
m∑

i=1

ni = n and
k−1∑
i=1

ni ≤ n− t,
m∑

i=k

ni ≥ t.

So the content encryption key may be recovered using the (t, n) threshold
scheme and the digital content can be well used. 	


Fig. 3. Tolerance scope in hardware alteration.

Fig. 3 presents the results of theorem 1 and theorem 2, i.e. the tolerance scope
in hardware alteration of our hardware adaptive approach upon the premises
that nm ≤ n − t and each piece of the hardware information collected in the
approach can uniquely identify the corresponding hardware component. In Fig. 3,
natural number j satisfies inequations (1) and k satisfies inequations (2). The
field [0, m− j + 1] occupied by the capital character ”T” is the tolerance scope,
which means that the protected content can be well used as long as the total
number of the altered hardware components belonging to Ω is within this scope;
the field [k, m] occupied by the character ”I” is the intolerance scope; and the
filed (m− j +1, k) occupied by the character ”P” is the possible tolerance scope.

Theorem 3 (Copyright Protection). With the hardware adaptive approach,
the generated digital license can’t be shared among different rendering devices
if all pieces of the hardware information collected in the approach can uniquely
identify the corresponding hardware component.

Proof. Assume that the digital license generated by the proposed scheme can be
shared between two different rendering devices A and B, i.e. both hardware con-
figuration of device A and B can be used to reconstruct the content decryption
key, we will show that this assumption leads to a contradiction.

Since a valid share and its variant can only be recovered by using the same
hardware information used to encapsulate them (see the proof of theorem 1),
only the device with at least t pieces of same hardware information used to
generate the digital license can retrieve the content decryption key. So A and
B totally have at least 2t pieces of same hardware information used to generate
the digital license.

On the other hand, different hardware component has different hardware in-
formation upon the premise that all pieces of the hardware information collected
in the proposed approach can uniquely identify the corresponding hardware com-
ponent. For A and B can have at most m+m0 same hardware components used
to create the digital license, A and B have totally n+n0 pieces of same hardware
information used to create the digital license at best.
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Summing up the results above, we can conclude 2t ≤ n+n0. This is contrary
to t =

[
n+n0

2

]
+ 1. Thus, the digital license generated by our scheme can not be

shared among different rendering devices. 	


We can easily deduce the following corollary from the proofs of the theorems
above:

Corollary 1. If we replace the value of parameter t in the hardware adaptive
approach with any integer in the semi-close set [

[
n+n0

2

]
+ 1, n), theorem 1 and

theorem 2 will still hold. And theorem 3 holds if t ∈ [
[

n+n0
2

]
+ 1, n].

4 Discussions

Our proposed approach relies mainly on the security of the underlying encryption
schemes and the use of Shamir’s (t, n) threshold sharing scheme will not lessen
the security of the system. Well known secure encryption schemes can be used to
ensure the security of the protocol and the content. Besides, different encryption
algorithms and different hash functions can be adopted to increase the security
of the secret shares. Since license is bound to a specific device, replay attack
will not help the attacker access the protected content and mechanisms can
also be introduced to pretend the license server from deny of service attack. A
forgery attack will also fail for a valid payment receipt can only be generated
by an authorized credit organization. Though the digital license file f is sent
in plain form from the license server to the client, an attacker must first attack
the DRM controller, obtain its secret key and learn the mechanism of collecting
the identification information of the hardware components. Tamper resistance
mechanisms can also be adopted to ensure the security of the system.

As compared with the existing adaptive solutions, our approach needs no
additional connection between the client and the license server and keeps no
hardware information in the local machine. It is transparent to the consumer,
and partial modification of the hardware configuration of the rendering device
will not influence the use of the bought contents. Though our approach also has
check points, which are used to judge whether the decrypted shares are valid, the
attack of these points makes no-good and the copyrighted content is still secure.
Unlike the proposed adaptive approach, the attack of the hardware check point
in the adaptive approach used in Windows XP will help the malicious user access
the protected content.

However, security and flexibility does not come without costs. This is the
case not only in the present context, but also in general. One shortcoming in our
approach is that splitting encryption key into multiple pieces will put additional
workload on the license server and increase the degree of complexity of the
system. An in-depth study on this issue is underway. It is also important to note
that privacy should be enhanced in our proposed approach. Though hardware
information is concealed with a hash function and different hardware information
will be sent to the license server when the user requests digital licenses for
different digital contents in our approach, the use of the open content identity
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CID can still help the license server or a malicious user build link between the
hashed hardware information and the bought contents to some extent. Studies
are being made to apply the randomization method [4] or some other “blinded”
scheme to our approach so that the privacy of the hardware information of the
consumer’s device and the information of the bought contents can be safer.

5 Conclusions and Future Work

In this paper, we have presented a new approach using Shamir’s (t, n) thresh-
old sharing scheme to solve the hardware adaptive problem in digital rights
management. In our approach, the consumer can change any m − j + 1 or less
hardware components if nm ≤ n− t and the bought digital content can still be
flowingly used without any extra operation, where j satisfies inequations (1).
Meanwhile, the generated digital license can’t be shared among different render-
ing devices if all the hardware information of the selected hardware components
in the proposed scheme can uniquely identify the hardware component. So the
proposed approach balances the requirements of hardware alteration and copy-
right protection on a reasonable level. As discussed in Section 4, the analysis
of the complexity of our approach is our future work. And to enhance patron’s
privacy safety, we will also improve the approach by applying some ”blinded”
scheme.
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Abstract. In this paper, we deal with the problem of how to embed
unique fingerprints into broadcasted contents or packaged contents, such
as CD and DVD, without giving the watermarking algorithm to the
decoders at the receivers. We propose a new model using around-half-
rate dynamic revocation scheme in broadcast encryption. Our model
achieves the following properties: (1) No watermarking algorithm at the
decoders; (2) Dynamic fingerprinting; and (3) Dynamic revocation. Re-
vocation schemes allow a center to broadcast an encrypted message so
that only a particular subset of the users can obtain the contents of the
message. However, when dealing with around-half-rate revocation, most
past proposed schemes failed to obtain a good efficiency, i.e. the message
length that must be transmitted by the sender or the number of storage
keys at a user is too large. In addition, we propose an efficient algorithm
of revocation that reduces both the message length and the size of stor-
age keys at a user while maintaining both collusion-freeness and a single
decryption at a user.

1 Introduction

Broadcast encryption schemes are techniques that allow a center to transmit
encrypted data to a large set of receivers so that only a particular subset of
privileged receivers can decrypt it. Such schemes are useful for pay-TV systems,
multicast communication, distribution of copyrighted material (e.g. video, music
and so on) on encrypted CD/DVD disks, among others. Broadcast encryption
schemes deal with the tracing mechanism, traitor tracing schemes, which enables
to trace the source of keys used by an illegal device such as pirate decoders. How-
ever, those do not deal with the illegal redistribution of the decrypted content by
a legitimate user (e.g. to rebroadcast the decrypted content). If any legitimate
user redistributes the decrypted content by himself/herself, a center cannot trace
the source of the illegal redistribution.

Fingerprinting schemes are helpful techniques in protecting digital contents
against illegal redistribution. These schemes embed unique data per user (i.e.

C.H. Lim and M. Yung (Eds.): WISA 2004, LNCS 3325, pp. 251–263, 2004.
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an ID) into copies of a digital content and if an illegal copy appears, allow the
content distributor to trace the source of the illegal redistribution. However, it
is hard to straightforwardly combine fingerprinting and broadcast encryption
schemes. While in broadcast encryption schemes each user receives the same
content, in fingerprinting schemes each user receives slightly different contents.

In this paper, we discuss a broadcast encryption scheme which prevents the
illegal redistribution of contents. [3] and [5] have been proposed as answers to
such problem. In [3], Boneh and Shaw proposed a distribution scheme in which
a user receives a bulk of data common to all users, and a small number of extra
bits unique to him. The bulk of data refers to the content which is watermarked
and encrypted and the extra bits refers to the private key which can decrypt
some part of the broadcasted common data. In [5], Fiat and Tassa proposed
a dynamic model that fingerprints are generated on the fly according to the
feedback from the pirate distribution network.

In this paper, we propose a novel way to fingerprint broadcasted data using
a revocation scheme. Revocation schemes allow a center to exclude a subset of
users from obtaining a message. Our model achieves the following properties: (1)
No watermarking algorithm at the decoders; (2) Dynamic fingerprinting that the
embedding fingerprinting codes can be changed dynamically; and (3) Dynamic
revocation that any subset of users can be revoked temporality or eternally.
For our model, it is required that on the order of 1/2 the users of a broadcast
encryption scheme can be revoked at all times. While our idea can in principle
employ any revocation scheme, such as [9], [6] and [8], they are not suitable for it
since they do not have a good performance when around half of users is revoked.
So that we propose a new scheme supporting efficient revocation of half of the
participants.

1.1 Classification of Fingerprinting Schemes

Now, we classify fingerprinting schemes into four types (Figure 1) and describe
each type below in detail.

Type A

Broadcast
channel

Embedding at the Server
Type D: Dynamic selection and

revocable

Type C: Static selection and 
not revocable

Type B

Selecting at the Client

Embedding at the Client

Interactive 
channel

bidirectional 

unidirectional 

unidirectional 

Fig. 1. The classification of fingerprinting schemes.
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Type A. This scheme is the simplest one. Users are connected to a content
distributor with interactive channels such as the Internet. Whenever a user re-
quests a content, the distributor authenticates the user first, embeds the user’s
ID into the content and then sends it to the user. This scheme can hide the wa-
termarking algorithm from the users, but is not suitable for dealing with heavy
requests since the embedding is done after request.

Type B. A distributor broadcasts clear contents and then each decoder embeds
its ID into the contents. For example, the watermarking algorithm is built in the
decoder at a user and whenever the received content is decoded, a fingerprint
is embedded into that. The big disadvantage of this is that the watermarking
algorithm is in the users’ side. Some users may reverse-engineer them, create
and distribute the watermark erasing algorithm. Note that it is not so difficult
to make an erasing algorithm if the watermarking algorithm is known. While
good tamper resistant modules may prevent the reverse-engineer, it is still hard
to make perfectly tamper resistant modules with low costs.

Type C. Unlike Type B, the watermarking algorithm is kept in the server
side (and then the users select the watermarked contents according to their ID).
This can hide the watermarking algorithm from the users. When a content, say
a movie, is broadcasted to a group of N users, the simplest way to achieve that
would be as follows:

Step 1. Make N copies of the movie and then embed unique fingerprints in
each copy.

Step 2. Encrypt each copy with each user’s key.
Step 3. Broadcast all the N encrypted copies to all the users.

It is easy to see that this construction achieves a fingerprinting scheme over
broadcast without giving the watermarking algorithm to the decoders at the
receivers. Only the legitimate N users receive the fingerprinted movie, and then
even if some of them redistribute the fingerprinted one they can be traced since
unique fingerprinters are associated with the users.

This scheme, however, must broadcast N copies of the movie, which is almost
impossible for large N , say one million. Here, we present an improved scheme to
reduce the broadcast overhead.

Step 1. Divide the movie into l segments.
Step 2. Make two copies of each segment. We arrange them in a 2 × l matrix

as follows:

S =
[
seg11 seg12 seg13 · · · seg1l

seg21 seg22 seg23 · · · seg2l

]
,

where segij denotes the j-th segment in the i-th copy of the movie.
Step 3. Embed a watermark denoting ‘0’ in seg1j (1 ≤ j ≤ l) and ‘1’ in

seg2j (1 ≤ j ≤ l), respectively. We call each watermarked segment a variant
and denote it varij for i (1 ≤ i ≤ 2) and j (1 ≤ j ≤ l).
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Step 4. Encrypt each variant varij with a key Kij that is pre-assigned to each
user, i.e. each user has a set of l keys {Ki1, · · · , Kil} that is associated with
his ID:

Venc =
[

EK11(var11) · · · EK1l
(var1l)

EK21(var21) · · · EK2l
(var2l)

]
,

where EK(M) denotes an encryption function which encrypts M with the
key K.

Step 5. Broadcast Venc.

It is easy to see that l bit ID is embedded in the decrypted content from each
user’s decoder using 2 copies of the movie instead of N copies in the previous
solution.

Unfortunately, this scheme still has disadvantages. One is that there is no
way to exclude compromised keys from receiving new broadcast contents. An-
other disadvantage is that only static fingerprints are embedded repeatedly
but dynamic ones are not. For example, let l = 5 and a set of keys K1 =
{K11, K12, K23, K14, K25} be pre-assigned to a user U1 in the former case. Then
U1 will always get contents where the fixed fingerprint of “00101” is embedded
repeatedly. Moreover the center cannot revoke K1 even if it is disclosed to the In-
ternet since to stop encrypting with it means to block the honest users receiving
parts of the contents. Thus this scheme cannot revoke compromised keys.

Type D. This is our proposal that can revoke compromised keys and can vary
embedding IDs dynamically. To realize this, we propose to broadcast Kij to each
half of the users using a revocation scheme that can revoke half of the users. For
example, if the center broadcasts K11 using a half-rate revocation scheme to
users U1 and U2 excluding U3 and U4 and then broadcasts K21 to U3 and U4

excluding U1 and U2, it can embed ‘0’ to the contents from both U1 and U2 and
‘1’ from U3 and U4, respectively. If it broadcasts K11 to U2 and U3 and K21

to U1 and U4, then it can embed ‘0’ to the contents from U2 and U3 and ‘1’
from U1 and U4. Thus it can change the embedding fingerprint dynamically. It
can also exclude malicious users by giving them neither K1i nor K2i. In spite of
the simplicity of our idea we will see in the subsequent section that it is quite
effective.

1.2 Related Work

Revocation schemes allow a center to exclude a subset of users from obtaining
a message. These schemes can be realized using broadcast encryption schemes
that allow the center to deliver the message only to the compliment of a revoked
subset. Several works in this topic can be found[11–13, 9, 6, 8, 1] to improve issues
such as

– transmission overhead (i.e. message length)
– key size (i.e. the size of storage keys for one receiver)
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– operation costs (to retrieve a session key1)
– collusion immunity to revoked users

and so on.
In this paper, we focus on the schemes that are collusion-free and that do

not require any modular exponentiation. Works dealing with a similar setting
are [9, 6, 8].

In [9], Naor et al. proposed two efficient schemes using the full binary tree
structure. They named them the Complete Subtree (CS) method and the Subset
Difference (SD) method, respectively. Later on, Halevy et al proposed in [6] the
Layered Subset Difference (LSD) method that improves the size of storage keys
of SD while maintaining almost the same message size2 and operation costs for a
receiver. In [8], Nakano et al proposed the Power Set (PS) method that reduces
the message length by extending CS to the a-ary tree structure.

Even though all of them, CS, SD, LSD and PS, have a good performance
for a small (and a large) number of revocations, unfortunately these are not the
case for half-rate revocations (see Section 4 for more details). Thus we propose
a new scheme that is suitable for half-rate revocations.

1.3 Our Results

In order to embed fingerprinting codes in broadcasted contents, we propose a
new model having the following features:

No Watermarking Algorithm at the Decoders: A broadcaster (or a cen-
ter) can embed unique fingerprinting codes in the decoded contents without
giving any watermarking algorithm to them.

Dynamic Fingerprinting: A broadcaster can change the embedding finger-
printing codes dynamically. This means the model can employ any dynamic
fingerprinting codes, such as [5], as well as static ones, such as [3].

Dynamic Revocation: A broadcaster can revoke any subset of users tempo-
rality or eternally.

Even though the new model requires a broadcast encryption scheme that can
revoke half of the subscribers dynamically, past schemes, i.e. CS, SD, LSD and
PS, are not suitable for this purpose since they do not have good performance
for half-rate revocations3.

Thus we also propose a new broadcast encryption scheme that is suitable for
the half-rate dynamic revocation. Our scheme is efficient in terms of the message
length and the size of storage keys at a user while maintaining collusion-freeness
and a single decryption (of a symmetric-key encryption scheme) at a user.
1 A session key in this paper means a key of encrypting the whole or a part of a

content.
2 The exact message length of LSD is slightly larger than that of SD even though they

have the same order.
3 This is not a disadvantage for the normal usage of these protocols since the number

of revoked decoders is usually small.
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This paper is organized as follows: In Section 2, we describe a new model
with the contents traceability using a half-rate dynamic revocation scheme. In
Section 3, we describe the framework for our revocation scheme and a revocation
scheme suitable for a half-rate dynamic revocation. We evaluate the efficiency of
our scheme in Section 4. Finally we conclude in Section 5.

2 A Model for Fingerprinting Broadcasted Contents

In this section, we describe our broadcasting model that can embed a unique
fingerprint in every decoded content of every decoder. As described in Subsection
1.3, it has nice features: (1) no watermarking algorithm at the decoders, (2)
dynamic fingerprinting and (3) dynamic revocation.

Let N be the total number of users. We assume that every user has a unique
secret information which is predistributed through a secure channel or secure
storage such as IC card, individually. The unique secret information consists
of keys of a revocation scheme for broadcast encryption which is not changed
until the termination of the system. Let center be the content provider or the
content owner. Let content be the original content to be sent by the center. We
assume that the content is composed of l pieces called segments, i.e. content =
(seg1 seg2 · · · segl).

For such a content, the center makes contents to be broadcasted (or packaged)
as follows.

Step 1. Divide the content into l segments.
Step 2. Make t (t ≥ 2) copies of each segment. We arrange them in a t × l

matrix as follows:

S =

⎡⎢⎢⎢⎣
seg11 seg12 · · · seg1l

seg21 seg22 · · · seg2l

...
... · · ·

...
segt1 segt2 · · · segtl

⎤⎥⎥⎥⎦ ,

where segij denotes the j-th segment in the i-th copy of the content.
Step 3. Embed a watermark denoting ‘0’ in seg1j (1 ≤ j ≤ l), ‘1’ in seg2j (1 ≤

j ≤ l) and i− 1 in segij (1 ≤ j ≤ l), respectively. We call each watermarked
segment a variant and denote it varij for i (1 ≤ i ≤ t) and j (1 ≤ j ≤ l).

Step 4. Encrypt every variant varij with a unique session key4 Kij .

Venc =

⎡⎢⎢⎢⎣
EK11(var11) · · · EK1l

(var1l)
EK21(var21) · · · EK2l

(var2l)
... · · ·

...
EKt1(vart1) · · · EKtl

(vartl)

⎤⎥⎥⎥⎦ ,

where EK(M) denotes an encryption function which encrypts M with the
key K.

4 A session key in this paper means a key of encrypting the whole or a part of a
content.
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Step 5. Broadcast Venc.
Step 6. For 1 ≤ j ≤ l,

Step 6-1. Divide N users into t disjoint subsets U i,j (1 ≤ i ≤ t).
Step 6-2. Broadcast Kij so that all the users in U i,j can decrypt it using

a revocation scheme that revokes users in R = N\U i,j , where N is a
set of all the N users.

In Step 6-1, if the center wants to permanently revoke some malicious users
who e.g. conspired to generate pirated decoders or contents, it divides N users
into t + 1 disjoint subsets U i,j (1 ≤ i ≤ t + 1) where U t+1,j is the set for the
permanently revoked users who cannot receive any contents.

In this model, we assume that N ≤ tl. t can be any positive integer greater
than 1, but large t is not appropriate since broadcasting t copies of a content
consumes a channel. While larger t can shorten the length of embedding fin-
gerprinting codes, this advantage is small since the center embed long codes
dynamically using a lot of contents. Thus we focus on the case of t = 2 below.

Figure 2 shows an example of the model for t = 2. In this figure, white
squares containing ‘0’ or ‘1’ express segments where ‘0’ or ‘1’ is embedded, i.e.
variants. The variants are encrypted with session keys Kij and then the keys Kij

are broadcasted using Header generated by a revocation scheme. The decoder of
a user u has a unique set Iu of predistributed keys, and using it either K1j or
K2j is decrypted as long as he/she is not revoked permanently. You can see that
a binary sequence of length l is embedded in the decoded content of each user.

The center not only can change the embedding sequence by changing the
header each time, but also can revoke compromised decoders from receiving
newly distributed contents.

Fig. 2. The model: t = 2.
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3 Our Revocation Scheme

The new model in Section 2 requires a revocation scheme in Step 6-2. The past
schemes, i.e. CS, SD, LSD and PS, are however not suitable for this purpose
especially for t = 2 since they do not have good performance for the half-rate
revocation. Thus, we propose an efficient broadcast encryption scheme that is
suitable for the half-rate dynamic revocation. We explain the framework first.

3.1 Framework

Let a letter in boldface, e.g. A, denote a set and |A| denote the cardinality of
A.

Let N denote a set of all the N users and R denote a set of revoked users in
N . R may be dynamically changed. Let r = |R|, then r ≈ N/2 in the previous
model of t = 2. Let N 1, N2, · · · , NN/n be disjoint groups of users such that
N i ⊂N and |N i| = n. For simplicity, we assume n divides into N , i.e. n|N . Let
Si be the set of non-empty subsets of N i and thus |Si| = 2n−1 for 1 ≤ i ≤ N/n.
Let Si[j] for 1 ≤ j ≤ 2n − 1 denote 2n − 1 distinct members of Si. Finally, we
assign a unique session key Li[j] to Si[j] for 1 ≤ i ≤ N/n and 1 ≤ j ≤ 2n − 1,
respectively.

User Key Assignment. Upon initializing the system, the center distributes
private information Iu, which is a set of user keys, to a user u. The set of keys
assigned to each user u, 1 ≤ u ≤ N is defined as follows.

Iu := {For 1 ≤ i ≤ N/n and 1 ≤ j ≤ 2n − 1,

the key Li[j] corresponding to Si[j] s.t. u ∈ Si[j]}.

Message Generation for Revocation. Given a session key K and a group R
of users to be revoked, the center generates a header as follows.

Step 1. The center finds a collection of subsets Si[j] such that N\R =
Si1 [ji1 ] ∪ Si2 [ji2 ] ∪ · · · ∪ Sim [jim ] for 1 ≤ i1, i2, · · · , im ≤ N/n and 1 ≤
j1, j2, · · · , jm ≤ 2n − 1 where m denotes the number of subsets Si[j] needed
to form N\R and 0 ≤ m ≤ N/n.

Step 2. The center encrypts the session key K with the key Li[j] corresponding
to the found subset Si[j] in Step 1. Its ciphertext is given by ELi[j](K).

Step 3. The center broadcasts

{{i1, ji1}, {i2, ji2}, · · · , {im, jim},
ELi1 [ji1 ](K), ELi2 [ji2 ](K), · · · , ELim [jim ](K)}.

Message Decryption. Upon receiving the broadcasted data such as

{{i1, ji1}, {i2, ji2}, · · · , {im, jim}, C1, C2, · · · , Cm},

each user u (1 ≤ u ≤ N) performs the following:
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Step 1. The user u finds an index {i, j} such that u ∈ Si[j].
Step 2. The user u retrieves the corresponding key Li[j] from his/her private

information Iu and then decrypts the corresponding ciphertext Ci with it.
Thus u can obtain the session key K.

Tracing of Traitors. If pirated decoders are found, we can take the following
two approaches to trace the traitors who generated the pirated decoders (even if
the keys inside are protected by some tamper resistant modules.) One approach
is to use the generic traitor tracing method proposed in [9], which is applicable
to any tree-based revocation schemes including ours. The other one is to ana-
lyze the fingerprinting codes embedded in the contents decoded from the pirate
decoder in our model of Section 2. To trace its supporting traitors based on the
fingerprinting codes found in the pirate copy, we assume that the watermark
algorithm is robust and the embedded mark cannot be changed or removed such
as [5] and [10]. Since our model can dynamically vary embedding fingerprinting
codes using a revocation scheme, any fingerprinting codes including static one
[3] and dynamic one [5] are available.

3.2 The Method

Initializing System. We consider a tree of height 2 with N leaves. In such a
tree, each internal node has n children and each leaf corresponds to each user.
Figure 3 shows an example of the tree structure for N = 9 and n = 3.

Let vi (1 ≤ i ≤ N/n) denote an internal node of the tree. The leaves of the
subtree rooted at an internal node vi corresponds to the members of the user
group N i for i (1 ≤ i ≤ N/n). For i (1 ≤ i ≤ N/n) and j (1 ≤ j ≤ 2n − 1), the
center associates every subset Si[j] with a key Li[j] which is chosen randomly
and independently. Then a user u receives the keys associated with the subsets
Si[j] which he/her belongs to. Table 1 shows an example of the key assignment
method for n = 3. Thus the number of keys given to each user is 2n−1. In
the example depicted in Figure 3, the set of keys given to the user u2 and the
user u6 are I2 = {L1[2], L1[4], L1[6], L1[7]} and I6 = {L2[3], L2[5], L2[6], L2[7]},
respectively.

The key size of our scheme can be reduced by applying the key derivation
scheme[2]. In [2], Attrapadung et al have introduced a key derivation scheme

Fig. 3. The subset scheme: The gray circles express the users to be revoked. N = 9
and n = 3.
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Table 1. The key assignment for each user (in the case of n = 3): Each user is assigned
23−1 = 4 keys. “©” means the user belongs to the subset, and thus the corresponding
key is assigned to the user. “×” means the key is not assigned to the user.

Subset Key 1st User 2nd User 3rd User

Si[1] Li[1] © × ×
Si[2] Li[2] × © ×
Si[3] Li[3] × × ©
Si[4] Li[4] © © ×
Si[5] Li[5] © × ©
Si[6] Li[6] × © ©
Si[7] Li[7] © © ©

Table 2. Comparison of the performance (N , a and n are the numbers of total users,
branches at each vertex of the tree and the size of the group of users, respectively.
Message length is the worst case for the number of revoked users r = N/2).

# of User keys Message Length # of Collusion
(worst case) Decryption Threshold

Trivial 1 N/2 1 N

CS[9] log2 N + 1 N/2 1 N

SD[9] log2 N(log2 N + 1)/2 + 1 N/2 1 N

LSD[6] log
3/2
2 N + 1 N/2 1 N

PS[8] (2(a−1) − 1) loga N + 1 N/a 1 N

The subset scheme 
(2n − 1)/n� N/n 1 N

based on a pseudo random generator which is a cryptographic primitive equiva-
lent to private key encryption. The result of them is as follows: Let n be the total
number of users. The number of keys given to each user is at most �(2n − 1)/n�
and the required computational overhead is O(n).

Message Generation for Revocation. For a given set R of revoked users,
let R be divided into R1, R2, · · · , RN/n, where Ri is a group of revoked users of
N i. Each set N i \Ri is associated with at least one key. Therefore, the session
key is encrypted with at most N/n keys. In the example depicted in Figure 3,
the center generates the message with the key L1[1], L2[2] and L3[4] to revoke
R1 = {u2, u3}, R2 = {u4, u6} and R3 = {u9}, respectively.

Message Decryption. When receiving the broadcasted message, each user
u ∈ N finds whether subset including it is among indices. If a table lookup
structure is used, the evaluation of the subset key takes one. Therefore, the
required computational overhead is O(1) and the session key can be retrieved
by only one decryption.

4 Comparison

In this section, we compare the performance of Trivial, CS, SD, LDS, PS and the
subset scheme where Trivial simply encrypts a session key with each individual
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key and lists up all the encrypted data. We assume the size of the session-key K
and the block size of the symmetric block cipher EK() are 128 bits, i.e. 16 bytes,
respectively. We use the term “message length” to denote the number of blocks
where a session-key is encrypted using the symmetric block cipher, according to
the previous papers. The size of messages = block size × message length.

Table 2 illustrates the number of user keys, the message length of the worst
case for the number of revoked users r = N/2, the number of decrypting oper-
ations and the collusion threshold of the schemes. As shown in Table 2, all of
them are collusion-free and require only one decryption operation of a symmetric
cipher to retrieve the session key.

The worst message lengths of CS, SD and LSD are N/2 for r = N/2. Even
though the worst message lengths of SD and LSD are shown to be 2r−1 and 4r−2
respectively in [9, 6], these are for small r. We show the average message length
versus r obtained by simulation in Figure 4. Note that this figure shows how
the average message length behaves according to r, our aim is not to compare
the message length among them since the corresponding key sizes are different.
The key sizes of CS, SD, PS and the subset scheme in Figure 4 are 400 bytes,
4816 bytes, 12208 bytes and 512 bytes, respectively. As you can see, the message
length of CS, SD and LSD 5 are almost maximized around r = N/2.

The relationship between the message size and the storage size for r = N/2
is illustrated in Figure 5. PS and the subset scheme have a variable tradeoff
between the message size and the storage size with the parameter a and n,
respectively, whereas CS, SD and LSD have a fixed performance. As shown in
Figure 5, the sizes of both messages and storage keys of subset scheme for n = 4

5 The message length of LSD is almost the same as SD [6], even though it is slightly
larger than that of SD.
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is smaller than those of CS, SD and LSD, respectively. Also the size of storage
keys of the subset scheme is smaller than that of PS for n = a maintaining
the same message size. Thus, the subset scheme has a better performance than
the previous schemes on the tradeoff between the size of messages and that of
storage keys.

5 Conclusions

In this paper, we have dealt with the problem of how to embed unique finger-
prints into broadcasted contents or packaged contents, such as CD and DVD,
without giving the watermarking algorithm to the decoders at receivers. We
proposed a novel way to fingerprint broadcasted data using around-half-rate
dynamic revocation scheme. Our model achieved the following features: (1) No
watermarking algorithm at the decoders; (2) Dynamic fingerprinting; and (3)
Dynamic revocation.

In addition, we pointed out that when dealing with around-half-rate revo-
cation, most past proposed schemes failed to obtain a good efficiency, i.e. the
message length that must be transmitted by the sender or the number of storage
keys at a user is too large. We showed that the subset scheme is an efficient algo-
rithm of revocation that reduces both the message length and the size of storage
keys at a user while maintaining both collusion-freeness and a single decryption
at a user.
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can revoke some users without redistributing a new secret key to other
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1 Introduction

A broadcast encryption scheme is a multiple user encryption scheme, where a
sender broadcasts encrypted data to users through a public inseucre channel
and only legitimate users can decrypt it. A broadcast encryption scheme has
numerous applications, such as a pay-TV system, the distribution of copyrighted
materials, internet multicasting of video, music, and magazines, and so on.

Fiat and Naor first formalized the basic definitions and paradigms of the
broadcast encryption scheme [10]. Afterwards, many variants have been re-
searched. One is the scheme of tracing traitors. A traitor tracing scheme (TTS)
deters traitors from giving away their secret keys to decrypt the transmitted data
by enabling the system manager to trace at least one of the traitors who partici-
pated in the construction of a pirate decoder after confiscating it. We can divide
TTS into two categories. One scheme uses a secret key and coding approach [3,
4, 11, 19, 22–24] and the other uses a public key [2, 12, 25, 15]. In the secret key
scheme, the keys in a pirate decoder can be identified by combinatorial methods.
In the public key approach, the size of the enabling block is independent of the
number of users. In addition, the public key TTS enables the system manager to
prepare a public key that allows all content providers to broadcast data to users.
A TTS is called t-resilient if we can find at least one traitor after confiscation
of a pirate decoder which is constructed by at most t users.

In a (symmetric) TTS, users share all secret keys with the system manager.
Therefore, non-repudiation cannot be offered. That is, a malicious system man-
ager can implicate an innocent user in the construction of a pirate decoder, and
users can always deny their implication in the construction of a pirate decoder
and claim that it was the work of a malicious system manager. A solution to
this problem is an asymmetric TTS, first introduced by Pfitzmann and Waidner
[22, 23]. In an asymmetric TTS, the system manager does not know the entire
secret key of the user.

An asymmetric public key TTS was presented in [16, 27]. These schemes used
an oblivious polynomial evaluation (OPE) protocol [20] to achieve asymmetric
property. Recently, Kiayias and Yung showed a weakness of [16, 27] and proposed
a new scheme [14]. They used the idea of the use of the OPE protocol as in
[16, 27], especially the malleable OPE protocol [14], to achieve an asymmetric
property and the idea of [2] to construct a tracing algorithm

A Pay-TV scheme broadcasts a set of services or streams instead of one. That
is, a pay-TV scheme is a specific application of a broadcast encryption scheme
in which the secret to be broadcast is associated with a number of services.
For example, a pay-TV broadcaster offers various channels such as a sports
channel, a movie channel, and so on. A traitor tracing scheme is a variant of a
broadcast encryption scheme, so can be applied to construct a pay-TV scheme.
However, because most known traitor tracing schemes deal with the broadcast of
a single stream, direct extension to multiple streams is too inefficient, i.e., direct
extension to an m-stream case would involve an m-fold increase in the user’s
secret keys [21]. In other words, if the number of streams to be sent increases,
the number of secret keys each user must store in a secure memory also linearly



266 Chong Hee Kim, Yong Ho Hwang, and Pil Joong Lee

increase. Therefore, we require a specific traitor tracing scheme that can be
efficiently applied to a pay-TV scheme.

Recently, Narayanan et al. proposed a practical pay-TV scheme [21] that
deals with broadcasting multiple streams. In [21], the number of secret keys each
user must store in a secure memory is independent of the number of streams to
be sent. The number of secret keys of each user must be stored in a secure
memory is t + 4, and where t is the maximum number of colluded users. We
note that each user also has to store additional channel keys for each channel
and he/she does not need to store these channel keys in a secure memory [21].
Therefore the user’s key consists of t + 4 secret keys and m non-secure channel
keys if the user subscribes m channels. Narayanan et al.’s scheme does not offer
revocation property and asymmetric property. Every time a user un-subscribes
from channel j, then the channel key for the channel j must be changed and all
other users who subscribe to the channel j must be received a new key.

Our Results. We propose a new traitor tracing scheme for multiple chan-
nels and its application to a pay-TV scheme. The number of secret keys each
user must store in a secure memory is merely one regardless of the number of
channels. Our scheme has a revocation property, i.e., we can revoke some users
without redistributing a new secret key to other un-revoked users. Our scheme
also provides so called holding property - we can revoke some users and un-revoke
them without redistribution of new keys after some period. This is very useful
in a pay-TV scheme since a user may wish to un-subscribe from a channel for
a period of time and re-subscribe again later. Moreover, our pay-TV scheme is
based on a public key traitor tracing scheme. Therefore, any contents provider
can send encrypted data to users with the public key the system manager pro-
vides. Our scheme can also be extended to provide asymmetric property and
be secure against the adaptive chosen ciphertext attack. Table 1 shows a simple
comparison between Narayanan et al.’s scheme and ours.

Table 1. Comparison between Narayanan et al.’s and ours.

# of secret keys Revocation Holding System type

[21] t + 4 NO NO Symmetric key TTS

Our scheme 1 YES YES Public key TTS

2 Preliminaries

In this section, we briefly review the Lagrange interpolation in the exponent and
a malleable oblivious polynomial evaluation.

The Lagrange Interpolation in the Exponent. Let q be a prime and
f(x)=

∑z
t=0 atxt a polynomial of degree z over Zq. Let x0, . . . , xz be distinct

elements in Zq. Then using the Lagrange interpolation, we can express f(x)
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as
∑z

t=0(f(xt) · λt(x)), where λt(x) =
∏

0≤j �=t≤z
xj−x
xj−xt

, 0 ≤ t ≤ z. We de-
fine the Lagrange interpolation operator as: LI(x0, . . . , xz ; f(x0), . . . , f(xz))(x)
=
∑z

t=0(f(xt) · λt(x)) .
Next, we consider a cyclic group G of order q and a generator g of G. Let vt

= gf(xt), 0 ≤ t ≤ z, where xt ∈ Zq and vt ∈ G. Then we define the Lagrange
interpolation operator in the exponent as: EXP−LI(x0, . . . , xz; v0, . . . , vz)(x) =
gLI(x0,...,xz;f(x0),...,f(xz)) =

∏z
t=0 g(f(xt)·λt(x)) =

∏z
t=0 v

λt(x)
t . We also remark that

EXP − LI(x0, . . . , xz; vr
0 , . . . , v

r
z)(x) = [EXP − LI(x0, . . . , xz; v0, . . . , vz)(x)]r .

In what follows, we will refer to a function of the form gf(x), where f(x) is
polynomial, as an EXP - polynomial.

A Malleable Oblivious Polynomial Evaluation. An OPE protocol involves
two parties, the sender S who possesses a secret polynomial P ∈ Zq[x], and the
receiver R who possesses a secret value α ∈ Zq. An OPE protocol allows R to
compute P (α) in such a way that:

– S cannot extract any non-trivial information about α.
– R cannot extract any information about the polynomial P , other than what

can trivially be extracted from P (α).

We assume a two communication flow protocol (such as [5, 20]) where
{OPE}(α) denotes the data transmitted by the receiver R to the sender S in the
first flow, and {OPE}(P(α)) denotes the data transmitted by the sender to the
receiver in the second communication flow. If an OPE protocol has the following
two additional properties, we call it a malleable OPE [14]:

– Given {OPE}(α) the sender can easily compute {OPE}(α + α′), for a given
(e.g., random) α′ and + an operation in the underlying finite field.

– It is performed over a publicly committed value, namely α can be thought of
as a private key whose public key is publicly known.

3 Proposed Scheme

In this section, we describe our proposed scheme. We assume that there are three
entities, a system manager, content providers, and users. The system manager
generates system parameters, the public key, and the master secret key. The
system manager traces the traitors after the confiscation of a pirate decoder.
Given the public key, content providers send encrypted data to users. A content
provider can provide several channels. Let t be the maximum number of colluded
users and z be the revocation threshold. We set z ≥ 2t− 1.

System Initialization: The system manager selects a random generator g ∈ G,
where G is a group of order q in which q is a large prime such that 2q = p− 1,
and p is a large prime. It selects a random z degree polynomial f(x) = a0+a1x+
...+azx

z over Zq. Then it publishes the public key PK=(g, ga0, gf(1), . . . , gf(z)).
The master secret key is f(x).
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User Registration: The system manager generates a new index i > z and a
random value αi ∈ Zq. The user’s secret key is (i, αi). Note that the user does
not need to store i in a secure memory, only αi is the secret value for the user.

Channel Registration: To register a new channel, the content provider selects
a random bj ∈ Zq. Then the content provider securely sends bj to the system
manager. We note that bj must be kept secret.

Subscription: To subscribe to the channel j, a user i has to receive a channel
key, Kj

i , from the system manager. The system manager generates Qj(x, y) =
f(x)+bjy and computes Qj(i, αi) = f(i)+bjαi. Then the channel key for a user
i to channel j is Kj

i =Qj(i, αi). The system manger sends Kj
i to the user. Note

that the user does not need to store the channel key, Kj
i , in a secure memory.

We note that when a user first subscribes to a channel, user registration and
subscription processes are performed sequentially. Afterwards, when a user sub-
scribes to another channel, only subscription process is required. That is, user
registration process occurs with subscription process when a user first subscribes
to a channel.

Unsubscription: Let Cj be the set of the found traitors or the revoked users
for the channel j. Suppose that a user i wants to un-subscribe from the channel
j, the content provider inserts the index i to the revoke set Cj . Then the content
provider does encryption with revocation(See below for the detail). Note that
our scheme does not require redistribution of a new channel key to other users
who subscribe to channel j.

Encryption Without Revocation: Suppose that the content provider wishes
to send a message Mj of the channel j to users. Given the public key PK=(g,
h0, h1, . . ., hz)=(g, ga0 , gf(1), . . ., gf(z)), the content provider randomly selects
a session key sj and encrypts Mj with sj (generally this process is done by
symmetric encryption). Then it makes an enabling block T which contains sj as
follows:

The content provider selects a random r ∈ Zq and j1, . . . , jz ∈ Zq and com-
putes

T =< gr, sjh
r
0, g

−bjr, (j1, grf(j1)), (j2, grf(j2)), . . . , (jz , g
rf(jz)) > .

Where j1, . . . , jz are z unused shares which are not assigned to any user.
The content provider can compute grf(jt)=EXP−LI(0, . . . , z, hr

0, h
r
1, . . . , h

r
z)(jt)

using the Lagrange interpolation in the exponent.

Encryption with Revocation: Suppose that Cj = {c1, . . . , cm}, m ≤ z, is
the set of the found traitors or the revoked users for the channel j. To send a
message Mj to the remaining users, instead of randomly choosing unused shares,
the content provider fixes the first m shares as

(c1, g
rf(c1)), (c2, g

rf(c2)), . . . , (cm, grf(cm))
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and randomly chooses the rest z −m unused shares

(j1, grf(j1)), (j2, grf(j2)), . . . , (jz−m, grf(jz−m)).

The remaining process is the same as encryption without revocation.

Decryption: Given the enabling block T=< H , H0, H ′, (j1, Hj1), (j2, Hj2),
. . ., (jz , Hjz) > =< gr, sjh

r
0, g−bjr, (j1, grf(j1)), (j2, grf(j2)), . . ., (jz , g

rf(jz)) >

and the user’s key < i, αi, K
j
i >, the user i can compute sj with the equation

sj ←
H0

EXP − LI(j1, . . . , jz , i; Hj1 , . . . , Hjz , HKj
i H ′αi)(0)

Before proceeding any further, we briefly show that the output of the above
decryption algorithm is identical to the session key sj as follows:

H0

EXP − LI(j1, . . . , jz, i; Hj1 , . . . , Hjz , HKj
i H ′αi)(0)

=
sjh

r
0

EXP − LI(j1, . . . , jz , i; Hj1 , . . . , Hjz , (gr)Kj
i (g−bjr)αi)(0)

=
sjh

r
0

EXP − LI(j1, . . . , jz , i; Hj1 , . . . , Hjz , (gr)f(i)+bjαi(g−bjr)αi)(0)

=
sjh

r
0

EXP − LI(j1, . . . , jz , i; Hj1 , . . . , Hjz , (gr)f(i))(0)

=
sjh

r
0

EXP − LI(j1, . . . , jz , i; Hj1 , . . . , Hjz , Hi)(0)

=
sjh

r
0

hr
0

= sj

If the user i is included in Cj , then she cannot extract the session key sj . That
is, since EXP−LI(j1, . . ., jz, i; Hj1 , . . ., Hjz , Hi)(0) does not have independent
z + 1 shares, the user i cannot compute hr

0.

Tracing: We present a black box traitor tracing algorithm. This algorithm is
based on “black-box confirmation” [2, 25].

For every possible m-coalition {c1, c2, . . . , cm} of the users, m ≤ t,

1. Randomly selects z −m unused shares, say, {j1, . . . , jz−m}.
2. Construct a testing enabling block: T=<gr,sjh

r
0,g

−bjr,(c1,g
rf(c1)),(c2,g

rf(c2)),
. . . ,(cm,grf(cm)),(j1,grf(j1)),(j2,grf(j2)), . . . ,(jz−m,grf(jz−m))>.

3. Feed < T, Enc(Mj, sj) > to the decoder. Where, Enc(Mj, sj) is the sym-
metric encryption of Mj with sj .

4. If the decoder does not output the correct data Mj , we set {c1, c2, . . ., cm}
as a possible set of traitors.

Output the smallest of all possible sets of traitors found in Step 4.
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Re-subscription: Suppose that the user i unsubscribes from the channel j.
Then the content provider use encryption with revocation algorithm to send
encrypted data to the users and Cj contains i. If user i wants to re-subscribe
to the channel j after some period, we can do this very simply. The content
provider subtracts i from Cj . That is, it can be done by not using i to form the
enabling block.

Revocation Beyond the Threshold: If we have to revoke more than z users,
we can use the idea of [1]. The idea is that if a pirate decoder can decrypt at
most c percent of the transmitted data, say 95%, the partial part of the data is
useless. For example, if the content provider sends a movie and a pirate decoder
decrypt 95% of the movie, nobody uses this pirate decoder.

Assume that Cj = {c1, . . . , cm}, m > z, is the set of the found traitors or the
revoked users for the channel j. To broadcast message Mj , we partition Mj as
M1

j ||M2
j || . . . ||M l

j. For each Mk
j , 1 ≤ k ≤ l, the content provider constructs an

enabling block T k
j with shares:

(ci1 , g
rkf(ci1)), (ci2 , g

rkf(ci2)), . . . , (ciz , grkf(ciz )),

where ci1 , . . ., ciz are randomly chosen from Cj .

Asymmetric Traitor Tracing Scheme: The above protocol does not provide
the asymmetric property. Since the system manger knows all the user’s keys, a
malicious system manager can implicate an innocent user in the construction of
a pirate decoder, and users can always deny their implication in the construction
of a pirate decoder and claim that it was the work of a malicious system manager.

Recently, Kiayias and Yung proposed a technique to construct an asymmetric
traitor tracing scheme [14] using the malleable oblivious polynomial evaluation
(OPE). However, we cannot directly apply this technique to our scheme. Suppose
that we use the malleable OPE between the user and the system manager as in
[14]. Then the user i can compute Qj(i, αi)=f(i) + bjαi so that: i is randomly
selected by the system manager and αi=αC

i + αR
i , where αC

i is a value selected
by the user and the value αR

i is randomly selected by the system manager. The
commitment of the user to the value αC

i will be of the form < gαC
i , signi(g

αC
i ) >.

The system manager should not know the value Qj(i, αi) after the OPE protocol
and this value must keep secret in the user’s memory. However, in our setting
Qj(i, αi) is not a secret value - notice that the user’s secret value is only αi -, so
the system manager may know Qj(i, αi). Then the system manager can obtain
the value αi because the system manager already knows f(i) and bj. This breaks
the asymmetric property.

In our setting, the system manger constructs Qj(x, y, z)=f(x)+bjy+z and let
Kj

i =Qj(i, α1
i , α

2
i ). The malleable OPE between the user and the system manager

is done and finally the user i can compute Qj(i, α1
i , α

2
i ). The system manager

cannot extract the user’s secret key (α1
i , α

2
i ) which is generated by the user.

Although the system manager knows f(i), bj , and Qj(i, α1
i , α

2
i ), from these val-

ues he cannot solve the equation Qj(i, α1
i , α

2
i )=f(i) + bjα

1
i + α2

i . We note that



Pay-TV Scheme Using Traitor Tracing Scheme for Multiple Channels 271

Qj(i, α1
i , α

2
i ) is not known to the system manager during the OPE, but it can

be extracted from the subscription process or else since the user does not need
to store Qj(i, α1

i , α
2
i ) in a secure memory.

4 Security Analysis

In this section, we analyze the security of our scheme. First, we show that our
scheme is secure against z-coalition assuming that the discrete logarithm problem
is hard. To decrypt the message of the channel j, both the channel key for the
user i, Kj

i , and the secret key, αi, are required. Therefore, we show that the
attacker cannot compute another key pair (both channel key and the secret
key) for the channel j from the given z key pairs ((x1, α1, Qj(x1, α1)), . . .,
(xz , αz, Qj(xz , αz)) for the channel j.

Theorem 1 No coalition of z or fewer users who subscribe the channel j can
compute the private key of another user with a non-negligible probability, assum-
ing that computing the discrete logarithm over Gq is hard.

Proof. Suppose that the probabilistic polynomial-time algorithm A can compute
a new secret key (xk, αk, Qj(xk, αk)) from the given public key PK=(g, ga0 ,
gf(1), . . ., gf(z)) and z shares (x1, α1, Qj(x1, α1)), . . ., (xz , αz, Qj(xz , αz))
with a non-negligible probability ε. Then we can construct another probabilistic
polynomial-time algorithm B to compute the discrete logarithm over Gq with an
overwhelming probability.

Let (p, q, y) be the input of the discrete logarithm problem. The following B′

computes logg y (mod p) with a non-negligible probability. Let y = ga0 and f(x)
be the z-degree polynomial passing (0, a0) and (xi, f(xi)), 1 ≤ i ≤ z. We feed
the public key PK=(g, ga0 , gf(1), . . ., gf(z)) and z shares (x1, α1, Qj(x1, α1)),
. . ., (xz , αz , Qj(xz , αz)) to A and shall obtain a new share (xk, αk, Qj(xk, αk))
with a non-negligible probability. From Qj(x, y)=f(x) + bjy, we can compute
f(xk) (here we again suppose that bj is given to the attacker). With the given z
shares and (xk, f(xk)), we can compute f(0)=a0.

By applying the randomized technique to B′ for a polynomial number of
tests, we obtain B. �

The next theorem assures us that z or fewer users cannot compute the secret
information bj of the channel j.

Theorem 2 No coalition of z or fewer users who subscribe the channel j can
compute the private information bj of the channel j with a non-negligible proba-
bility.

Proof. Suppose that z users who subscribe the channel j put their secret keys
and want to compute the private information bj of the channel j. Then we can
compute the following equation:
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⎛⎜⎜⎜⎝
Qj(x1, α1)
Qj(x2, α2)

...
Qj(xz , αz)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1 x1 x2

1 · · · xz
1 α1

1 x2 x2
2 · · · xz

2 α2

...
...

...
. . .

...
...

1 xz x2
z · · · xz

z α2

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

M

·

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a0

a1

a2

...
az

bj

⎞⎟⎟⎟⎟⎟⎟⎟⎠
To solve the above equation, we require z + 2 shares, but the matrix M has

the rank z. Therefore, z coalition of users cannot compute the secret information
bj of the channel j. �

4.1 Security Against the Adaptive Chosen Ciphertext Attack

By the technique of [7, 13], we modify our scheme so that it becomes secure
against the adaptive chosen ciphertext attack under the decision Diffie-Hellman
assumption and the collision-resistant hash function assumption.

System Initialization and Channel Registration: The system manager
selects two random generators g1, g2 ∈ G, where G is a group of order q in
which q is a large prime such that 2q = p − 1, p is a large prime. It selects
x1, x2, y1, y2 ∈ Zq and z-degree polynomials X1(ξ), X2(ξ), Y1(ξ), Y2(ξ) over
Zq such that X1(0) = x1, X2(0) = x2, Y1(0) = y1, Y2(0) = y2. It also selects
z-degree polynomials Z1(ξ), Z2(ξ) over Zq and computes c = gx1

1 gx2
2 , d = gy1

1 gy2
2 .

Then it computes ht=g
Z1(t)
1 g

Z2(t)
2 , 0 ≤ t ≤ z and x1,t=g

X1(t)
1 , x2,t=g

X2(t)
2 ,

y1,t=g
Y1(t)
1 , y2,t=g

Y2(t)
2 . The content provider selects a random bj∈ Zq and give

it to the system manager. The system manager generates Q1
j(x)=Z1(x) and

Q2
j(x, y)=Z2(x) + bjy.

Finally the system manager chooses a hash function H from a family of F of
collision resistant hash functions, and outputs (PK, SKBE), where PK=(p, q,
g1, g2, c, d, x1,0, . . ., x1,z , x2,0, . . ., x2,z, y1,0, . . ., y1,z, y2,0, . . ., y2,z, h0, . . ., hz,
H) and SKBE=(X1, X2, Y1, Y2, Z1, Z2).

User Registration and Subscription: Each time a new user i > z decides to
subscribe to the channel j, the system manager provides him with a decoder box
containing the secret key SKi=(i, αi, X1(i), X2(i), Y1(i), Y2(i), Q1

j(i), Q2
j(i, αi)).

If a user already subscribes to other channel, only Q1
j(i) and Q2

j(i, αi) is sent to
him.

The Encryption and Decryption: The encryption and decryption algorithm
can be summarized as shown in Table 2.

We here verify that the output of the decryption algorithm is identical to
session key s if the user i is a legitimate user. We can rewrite Fi computed from
the Step D4 as follows (let g2=gw

1 ):
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Table 2. Encryption and decryption scheme secure against CCA2.

Encryption algorithm Enc(PK, s, T ) Decryption algorithm Dec(i, T )

E1. r1 ←r Zq D1. α ← H(S, u1, u2, u3)

E2. u1 ← gr1
1 D2. Ci ← u

X1(i)+Y1(i)α
1 · uX2(i)+Y2(i)α

2

E3. u2 ← gr1
2 D3. Hi ← u

Q1
j
(i)

1 · u
Q2

j
(i,αi)

2 · uαi
3

E4. u3 ← g
−bjr1
2 D4. Fi ← Hi

C
Ci

E5. Ht ← hr1
t , (t = 0,.., z) D5. s ← S

EXP−LI(j1,..,jz,i;Fj1 ,..,Fjz ,Fi)(0)

E6. Hjt ← EXP-LI (0,.., z; H0,.., Hz)(jt)
(t = 1,.., z)

E7. S ← sj · H0

E8. α ← H(S,u1, u2, u3)
E9. Ct ← (x1,tx2,t)

r1(y1,ty2,t)
r1α

(t = 0,.., z)
E10. Cjt ← EXP-LI (0,.., z; C0,.., Cz)(jt),

(t = 1,.., z)
E11.C ← cr1dr1α

E12.Fjt = Hjt
C

Cjt
, (t = 1,.., z)

E13.T ←< S, u1, u2, u3, c
r1dr1α,

(j1, Fj1),.., (jz, Fjz ) >

Fi = Hi · ( C
Ci

)

= (u
Q1

j (i)

1 u
Q2

j(i,αi)

2 uαi
3 )(cr1dr1α)(u−X1(i)−Y1(i)α

1 · u−X2(i)−Y2(i)α
2 )

= g
r1Z1(i)+wr1Z2(i)+wr1bjαi−wr1bjαi−r1X1(i)−r1Y1(i)α−wr1X2(i)−wr1Y2(i)α
1 cr1dr1α

= g
r1Z1(i)+wr1Z2(i)−r1X1(i)−r1Y1(i)α−wr1X2(i)−wr1Y2(i)α+(r1x1+wr1x2+r1y1α+wr1y2α)
1

= g
Q(i)
1

Consequently, Fi=g
Q(i)
1 where, Q(ξ) is z-degree polynomial in Zq. If we com-

pute F0 using the Lagrange interpolation in the exponent like Step D5, finally
we can get following value:

F0 =EXP − LI(j1, · · · , jz, i; Fj1 , . . . , Fjz , Fi)(0)
=g

(r1z1+wr1z2)−r1x1−r1y1α−wr1x2−wr1y2α+(r1x1+wr1x2+r1y1α+wr1y2α)
1

=H0
cr1dr1α

C
=H0

Therefore, S
F0

= (s·H0)
H0

= sj.

Theorem 3 If the DDH problem is hard in Gq and H is chosen from a colli-
sion resistant hash function family F , then our scheme is z-resilient against the
adaptive chosen ciphertext attack.

The proof of Theorem 3 is shown in Appendix A.
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5 Conclusions

We proposed a new traitor tracing scheme for multiple channels and its applica-
tion to a pay-TV scheme. Our scheme requires only one secret key for each user
and it cannot be changed. The revocation property and holding property of our
scheme is very useful to construct a practical pay-TV scheme. The revocation
property enables the content providers to revoke some users without redistribu-
tion of a new secret key to other un-revoked users. The holding property enables
the content provider to revoke a user and un-revoke her without redistribution
of a new key to her after some period. Moreover, our pay-TV scheme is based
on a public key traitor tracing scheme. Therefore, any contents provider can
send encrypted data to users with the public key the system manager provides.
Our scheme also can be extended to provide asymmetric property and be secure
against the adaptive chosen ciphertext attack.

References

1. M. Abdalla, Y. Shavitt, and A. Wool, Towards making broadcast encryption prac-
tice, FC’99, LNCS V.1648, pp.140-157, 1999.

2. D. Boneh and M. Franklin, An efficient public key traitor tracing scheme,
CRYTO’99, LNCS V.1666, pp.338-353, 1999.

3. D. Boneh and J. Shaw, Collusion-secure fingerprinting for digital data, IEEE
Transaction on Information Theory 44(5), pp.1897-1905, 1998.

4. B. Chor, A. Fiat, andd M. Naor, Tracing traitor, CRYPTO’94, LNCS V.839,
pp.257-270, 1994.

5. Y.C. Chang and C.J. Lu, Oblivious polynomial evaluation and oblivious neural
learning, ASIACRYPT’99, LNCS V.2248, pp.369-384, 2001.

6. R. Cramer and V. Shoup, A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack, CRYPTO’98, LNCS V.1462, pp.13-25,
1998.

7. R. Cramer and V. Shoup, Design and analysis of practical public key encryption
scheme secure against adaptive chosen ciphertext attack, Manuscript, 2001.

8. Y. Dodis and N. Fazio, Public key trace and revoke scheme secure against adaptive
chosen ciphertext attack, PKC’03, pp.100-115, 2003.

9. Y. Dodis and N. Fazio, Public key trace and revoke scheme secure against adaptive
chosen ciphertext attack, Full version of [8], Availabe at http://eprint.iacr.org/,
2002.

10. A. Fiat and M. Naor, Broadcast encryption, CRYPTO’93, LNCS V.773 pp.480-
491, 1993.

11. E. Gafni, J. Staddon, and Y.L. Yin, Efficient methods for integrating traceability
and broadcast encryption, CRYPTO’99, LNCS V.1666, pp.372-287, 1999.

12. K. Kurosawa and Y. Desmedt, Optimum traitor tracing and asymmetric schemes,
EUROCRYPT’98, LNCS V.1403, pp.145-157, 1998.

13. C.H. Kim, Y.H. Hwang, and P.J. Lee, An efficient public key trace and revoke
scheme secure against adaptive chosen ciphertext attack, ASIACRYPT’03, LNCS
V.2893, pp.359-373, 2003.

14. A. Kiayias and M. Yung, Breaking and repairing asymmetric public-key traitor
tracing, ACM workshop on digital rights management, LNCS V.2696, 2002.
available at http://www.cse.uconn.edu/ akiayias/pubs/asymvpp-f.pdf



Pay-TV Scheme Using Traitor Tracing Scheme for Multiple Channels 275

15. A. Kiayias and M. Yung, Traitor tracing with constant transmission rate, EURO-
CRYPT’02, LNCS V. 2332, pp.450-465, 2002.

16. H. Komaki, Y. Watanabe, G. Hanaoka, and H. Imai, Efficient asymmetric self-
enforcement scheme with public traceability, PKC’01, LNCS V.1992, pp.225-239,
2001.

17. R. Canetti and S. Goldwasser, An efficient threshold public key cryptosystem se-
cure against adaptive chosen ciphertext attack, EUROCRYPT’99, LNCS V.1592,
pp.90-106, 1999.

18. Y. Mu and V. Varadharajan, Robust and secure broadcast, Indocrypt’01, LNCS
V.2247, pp.223-231, 2001

19. M. Naor and B. Pinkas, Threshold traitor tracing, CRYPTO’98, LNCS V.1462,
pp.502-517, 1998.

20. M. Naor and B. Pinkas, Oblivious transfer and polynomial evaluation, STOC’99,
pp.245-254, 1999.

21. A. Narayanan, C.P. Rangan, and K. Kim, Practical pay TV schemes, ACISP’03,
LNCS V.2727, pp.192-203, 2003.

22. B. Pfitzmann, Trials of traced traitors, Workshop on Information Hiding, LNCS
V.1174, pp.49-64, 1996.

23. B. Pfitzmann and M. Waidner, Asymmetric fingerprinting for large collusions,
ACM conference on Computer and Communication Security, pp.151-160, 1997.

24. D.R. Stinson and R. Wei, Combinatorial properties and constructions of traceabil-
ity schemes and frameproof codes, SIAM Journal on Discrete Math 11(1), pp.41-53,
1998.

25. W.G. Tzeng and Z.J. Tzeng, A public-key tracing scheme with revocation using
dynamic shares, PKC’01, LNCS 1992, pp.207-224, 2001.

26. A. Wool, Key management for encrypted broadcast, 5th ACM conference on Com-
puter and Communications Security, pp.7-16, 1998.

27. Y. Watanabe, G. Hanaoka, and H. Imai, Efficient asymmetric public-key traitor
tracing without trusted agents, CT-RSA’01, LNCS V.2020, pp.392-407, 2001.

Appendix A. Proof of Theorem 3

Our overall strategy for the proof follows the structural approach in [7]. We shall
define a sequence G0,G1, . . . ,Gl of modified attack games. Each of the games
G0,G1, . . . ,Gl operates on the same underlying probability space. In particular,
the public key cryptosystem, the coin tosses Coins of A, and the hidden bit σ
take on identical values across all games. Only some of the rules defining how
the environment responds to oracle queries differ from game to game. For any
1 ≤ i ≤ l, we let Ti be the event that σ = σ∗ in the game Gi. Our strategy is
to show that for 1 ≤ i ≤ l, the quantity |Pr[Ti−1]−Pr[Ti]| is negligible. Also, it
will be evident from the definition of game Gl that Pr[Tl] = 1

2 , which will imply
that |Pr[T0]− 1

2 | is negligible.
Before continuing, we state the following simple but useful lemma [7].

Lemma 1 Let U1, U2, and F be the events defined on some probability space.
Suppose that the event U1 ∧ ¬F occurs if and only if U2 ∧ ¬F occurs. Then
|Pr[U1]− Pr[U2]| ≤ Pr[F ].
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Game G0: Let G0 be the original attack game, let σ∗ ∈ {0, 1} denote the output
of A, and let T0 be the event that σ = σ∗ in G0, so that AdvCCA2

Ourscheme,A(λ) =
|Pr[T0]− 1

2 |.

Game G1: G1 is identical to G0, except that in G1, steps E5 and E9 are
replaced with the following:

E′
5. Ht ← u

Q1
j(t)

1 · uQ2
j (t,αt)

2 · uαt
3 , t = 0, . . . , z

E′
9. Ct ← u

X1(t)+Y1(t)α
1 · uX2(t)+Y2(t)α

2 , t = 0, . . . , z

The change we have made is purely conceptual, it merely makes explicit any
functional dependency of the above quantities on u1, u2, and u3. Cleary, it holds
that Pr[T0] = Pr[T1].

Game G2: We again modify the encryption oracle, replacing steps E1 and E3

by
E′

1. r1 ←r Zq, r2 ←r Zq\{r1}
E′

3. u2 ← gr2
2

Notice that while in G1 the values u1 and u2 are obtained using the same
value r1, in G2 they are independent subject to r1 = r2. Therefore, any difference
in behavior between G1 and G2 immediately yields a PPT algorithm A1 that is
able to distinguish DH tuples from totally random tuples with a non negligible
advantage. That is, |Pr[T2]− Pr[T1]| ≤ ε1 for some negligible ε1.

Game G3: In this game, we modify the decryption oracle in G2 to obtain G3

as follows:
D1. α← H(S, u1, u2, u3)
D′

2. Ci ← u
X1(i)+Y1(i)α+(X2(i)+Y2(i)α)w
1

D2−1. if (u2 = uw
1 )

D′
3. then Hi ← u

Q1
j(i)+Q2

j (i,αi)w−bjr1αiw

1

D′
4. Fi ← Hi

C
Ci

D′
5. s← S

EXP−LI(j1,...,jz,i,Fj1 ,...,Fjz ,Fi)(0)

D′
6. else return ⊥

Now, let R3 be the event that the adversary A submits some decryption
queries that are rejected in Step D2−1 in G3, but has passed in G2. Note that
if a query passes in D2−1 in G3, it would have also passed in G2. It is clear
that G2 and G3 proceed identically until the event R3 occurs. In particular, the
event T2 ∧ ¬R3 and T3 ∧ ¬R3 are identical. Therefore, by Lemma 1, we have

|Pr[T3]− Pr[T2]| ≤ Pr[R3]

and so it suffices to bound Pr[R3]. To do this we consider two more games, G4

and G5

Game G4: This game is identical to G3, except for a change in Step E7 as
follows:

E′
7.e←r Zq, S ← ge

1
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It is clear by construction that Pr[T4] = 1
2 , since in G4, the variable σ is

never used at all, and so the adversary’s output is independent of σ.
Let R4 be the event that some decryption queries that would have passed in

G2, but fail to pass in Step D2−1 in G4. Then we have the following facts.

Lemma 2 Pr[T4] = Pr[T3] and Pr[R4] = Pr[R3].

Game G5: This game is identical to G4, except for the following modification. In
the decryption algorithm, we add the following special rejection rule, to prevent
A from submitting an illegal enabling block to the decryption oracle once she
has received her challenge T ∗.

Special rejection rule: After the adversary A receives the challenge T ∗ =
(S∗, u∗

1, u
∗
2, u

∗
3, (crdrα)∗, (j∗1 , F ∗

j1), . . . , (j
∗
z , F ∗

jz
)), the decryption oracle rejects any

query < i, T >, with T = (S, u1, u2, u3, (crdrα), (j1, Fj1), . . . , (jz, Fjz )), such that
(S∗, u∗

1, u
∗
2) = (S, u1, u2), but α = α∗, and it does so before executing the test

in Step D2−1.

To analyze this game, we define two events. Let C5 be the event that the
adversary A submits a decryption query that is rejected using the above special
rejection rule, and R5 the event that the adversary A submits some decryption
query that would have passed in G2, but fails to pass in Step D2−1 in G5. It is
clear that G4 and G5 proceed identically until event C5 occurs. In particular,
the event R4 ∧ ¬C5 and R5 ∧ ¬C5 are identical. So by Lemma 1, we have

|Pr[R5]− Pr[R4]| ≤ Pr[C5]

At this point, if event C5 occurs with non-negligible probability, we can
construct a PPT algorithm A2 that breaks the collision resistance assumption
with non-negligible probability. So, |Pr[C5]| ≤ ε2 for some negligible ε2.

Finally, we show that event R5 occurs with negligible probability.

Lemma 3 Pr[R5] ≤ QA(λ)
q .

Where, QA(λ) is an upper bound on the number of decryption queries made
by the adversary A. The proof of Lemma 2 and Lemma 3 are omitted due to
space limitations, they can be easily extracted from [13].

Finally, combining the intermediate results, we conclude that the adversary
A’s advantage is negligible:

AdvCCA2
Ourscheme,A(λ) ≤ ε1 + ε2 +

QA(λ)
q

�
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Abstract. In this paper, we analyze the one-way mobile payment sys-
tem proposed by Ham et al. at WISA 2002. They claimed that the elec-
tronic cash of the system satisfies unforgeability and double spending
prevention. However, we show that the forgery of valid payment scripts
is possible since the purchase is not authenticated, thus the proposed
system is not secure.

1 Introduction

Electronic commerce means all aspects of business and market processes (in-
cluding buying and selling products and services) enabled by the Internet. The
electronic cash (also called digital cash or electronic money) means the digital
information equivalent to the paper (real) cash in the electronic commerce. Since
digital cash is merely an electronic representation of real money, it is possible to
easily duplicate and spend a certain amount of money more than once. There-
fore, electronic cash systems must have a structure to prevent the user from
double spending or overspending. Besides, there are several requirements for the
electronic cash system: double-spending prevention, anonymity, unforgeability,
divisibility, transferability etc.

The theoretical foundations of electronic cash were established by Chaum.
Chaum presented the first off-line and untraceable electronic cash [2, 3]. After
that much researches have been performed in the area of electronic cash [6, 4,
1, 7]. Most electronic cash protocols assume that the participants (customers,
vendors, and banks, etc.) are connected via wired connection with desktop en-
vironment, thus have enough computational power and bandwidth.

However the advent of mobile commerce has added other problems such as
performance degradation and new threats from the use of constrained devices
and wireless network. Hence we should simplify the protocol in terms of both
computational power needed and amount of data transferred by sacrificing some
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requirements of the electronic cash system. Recently, a mobile payment system
was proposed by Ham and others (From now on, we call it Ham’s system in brief)
[5]. They claimed that the system fulfills unforgeability and double-spending pre-
vention, and it needs only low computation load without any expensive modular
exponentiation.

In this paper, we analyze Ham’s system and point out that the system is
not secure as they claimed. We show that the purchase phase of the system
cannot give any authentication, thus eavesdroppers or malicious vendors can
forge valid payment transaction scripts. More precisely, because the equations
of the purchasing phase consist of almost linear terms, we can easily derive a
part of the private key of the customer. Then we present a few practical attack
scenarios for the system that may happen when this part of the private key is
revealed.

The rest of the paper is organized as follows: We describe briefly Ham’s
system in section 2. We analyze the system and present a few attack scenarios
in section 3, and conclude this paper in section 4.

2 Ham’s Mobile Payment System

2.1 Model of Electronic Payment System

We describe the electronic commerce model specified by Ham et al. There are
three parties involved: the customers(C), the vendors(V), and the banks(B) (see
Figure 1).

��
��

B

��
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C ��
��

V

�
�

�
�

����
�

�
�

���

�
�

�
�

���
�

�
�

��

�	

Withdrawal Deposit

Purchase

Fig. 1. Model of electronic payment system.

The electronic payment system consists of three protocols: Withdrawal, Pur-
chase, and Deposit. Withdrawal and Deposit protocols are performed over a
secure wired channel and only Purchase protocol is done through the wireless
(open) networks. Hence it is possible to be eavesdropped during the purchase
phase.

Each protocol has the following main functions:

Withdrawal (C ↔ B): C requests setting-up for the mobile payment to B.
Then B decides and publishes initial value observing the predetermined rule
and issues the confirmation receipt on the request.
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Purchase (C ↔ V): C constructs the payment script to match the negotiated
price of a product and pays it to V. Then B verifies the correctness of the
payment script.

Deposit (V ↔ B): V asks deposit of the payment script received from C.
Then B reimburses the appropriate amount of money to V after verification.

The security requirements posed in [5] for a mobile payment system are as
follows:

– Unforgeability: Only authorized entity (e.g. Bank) can issue valid money.
– Double-spending prevention: Customers cannot reuse issued money more

than once. For off-line digital cash, double-spending prevention might be
impossible. We can only detect it after double-spending.

– Efficiency: The payment system must be efficient with respect to storage,
communication, and computation.

2.2 Notations

– p, q: large primes such that q|p− 1.
– Z∗

p: a multiplicative group of integers modulo p.
– Gq: a subgroup of Z∗

p of order q where the discrete logarithm problem is
hard.

– g : a generator of Gq.
– [2, q − 1]: the set of integers greater than 1 and less than q.
– r ∈R [2, q − 1]: an integer r is chosen an random from [2, q − 1].
– a−1: the multiplicative inverse of a ∈ Z∗

p.
– ‖: the concatenation of two strings.
– H : {0, 1}∗ → {0, 1}l(l ≥ 160): a collision resistant one-way hash function.
– SKID, PKID: the private and public key of the entity ID respectively.
– SKID[messages]: the signature for ‘messages’ of the entity ID.

2.3 Description of Ham’s System

Assume that the electronic payment is done off-line, that is, the communication
with a bank is unnecessary during the purchase. The system consists of three
protocols: Withdrawal, Purchase, and Deposit. These protocols are depicted
in Figure 2, Figure 3, and Figure 4, respectively. Since Purchase protocol is done
through the wireless (open) networks, malicious attackers may eavesdrop on the
transmitted data during the purchase phase.

Each customer has two private and public key pairs, (x1; y1(= gx1)) and
(x2; y2(= gx2)) and public keys are opened to the public. Generation and dis-
tribution of these key pairs follow the usual public key cryptosystems except
that one has two public key pairs. In addition, they make use of a hash chain
technique, Keyed Hash Chain, to ascertain uniqueness of the current transaction
in the scheme.

Generation: KH0 = k, where k is a secret information.
KHi = H(k‖KHi−1) where i = 1, · · · , m.

Usage: Increasing order from 1 to m.
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Withdrawal. A customer C requests to the bank B a withdrawal of amount σ0

with his identity IDC , account information AI, and additional information ε. If
the request is valid, B generates the random secret value k which is used in the
keyed hash chain, and issues the money with a confirmation receipt ConfC . B
publishes the identity with yk, a validity time period T , and the signature DSB

in the public domain (PD). C stores his(her) own secret values, the transmitted
k(= KH0) and ConfC in his mobile device (MD). See Figure 2.

C B

y1 = gx1 ,y2 = gx2

PKC = (p, g, y1, y2)

SKC = (x1, x2)

REQ(IDC , AI, ε)
�

k ∈R [2, q − 1]

yk = gk

DSB = SKB [H(IDC‖yk‖T )]

PD ← (IDC , yk, T, DSB)

ConfC = SKB [IDC , k, σ0, T ]
ConfC�

MD ← (x1, x2, k, KH0, ConfC)

Fig. 2. Withdrawal protocol.

Purchase. Purchase protocol is carried out between C and V over the wireless
channel, and is unilateral from C to V. Assume that σ is the negotiated price of
i-th purchase of C. C calculates (α, β, ω) and sends them with his identity IDC

and B’s identity IDB (See Figure 3).

α = x1 + r for randomly chosen r

β = k + KHi

ω = r−1(σx1 + x2 + KHi +H(IDC‖IDV ‖IDB))

We note that in the above almost all operations are linear.
V gets public information (y1, y2, yk) of C from public domain and verifies

the validity of the payment script as follows:(
gα

y1

)ω
?= yσ

1 y2

(
gβ

yk

)
gH(ID)

where H(ID) = H(IDC‖IDV ‖IDB).

Deposit. V sends the stored payment script (IDV , IDC , ω, yr, g
KHi , REQ(σ))

to the bank B for deposit as depicted in Figure 4.
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C V

H(ID) = H(IDC‖IDV ‖IDB)

KHi = H(k‖KHi−1)

r ∈R [2, q − 1]

α = x1 + r

β = k + KHi

ω = r−1(σx1 + x2 + KHi + H(ID))

IDC , IDB , (α, β, ω)
�

Get y1, y2, yk

P1) H(ID) = H(IDC‖IDV ‖IDB)

P2) gα/y1 = gr(= yr)

P3) gβ/yk = gKHi

P4) Check yω
r = yσ

1 y2g
KHigH(ID)

Fig. 3. Purchase protocol.

B compares the payment script with the stored list of IDC . If B finds the
same gKHi in the list, B concludes that a double spending has happened and
closes the protocol. Otherwise, B verifies the validity of the script as follows:

gKHi
?= gH(k‖KHi−1)

yω
r

?= yσ
1 y2g

KHigH(ID)

Then B deposits the money of amount σ and keeps IDC and gKHi for a period
T , the lifespan of k.

3 Analysis of Ham’s Scheme

In this section, we show that the payment scheme proposed by Ham and others
is not secure as the authors claimed. We show that the attacker who has two
purchase scripts of a certain customer can extract a part of the private key of the
customer. The attacker can also forge new valid scripts, thus he can purchase
any product from vendors by impersonating the victim.

3.1 Extraction of C’s Private Key

We assume the following for our attack.

– A1: The attacker E can obtain two payment scripts that have used the same
k value.

– A2: E can obtain the hash value H(ID) used in the scripts.
– A3: E can obtain the price σ of the product in the scripts.



Vulnerability of a Mobile Payment System Proposed at WISA 2002 283

V B

IDV , IDC , ω, yr, g
KHi , REQ(σ)

�

Get y1, y2, yk

R1) H(ID) = H(IDC‖IDV ‖IDB)

R2) Check gKHi = gH(k‖KHi−1)

R3) Check yω
r = yσ

1 y2g
KHigH(ID)

R4) Replace KHi−1 ← KHi

Deposit(σ)
�

Fig. 4. Deposit protocol.

The first two assumptions are very practical especially in mobile public key
infrastructures, and the third one also can be assumed naturally in general pay-
ment systems. If they can’t be assumed in some situation, we may restrict our
attack to the case in which the attacker is a vendor V who participates in the
protocol. Then, the above assumptions need not be made, because V can obtain
all the variables in A1, A2, and A3 naturally during the process of the protocol.
Although our attack is simpler in such a case, for generality we describe our
attack assuming the attacker is a third party with the assumptions A1, A2, and
A3.

Suppose E knows two payment scripts, (α, β, ω) which is sent from C to V1

and (α′, β′, ω′) from C to V2. Then E knows the following relations:

α = x1 + r, (1)
β = k + KHi, (2)
ω = r−1(σx1 + x2 + KHi +H(ID)), (3)
α′ = x1 + r′, (4)
β′ = k + KHj, (5)
ω′ = r′−1(σ′x1 + x2 + KHj +H(ID′)). (6)

Equation (3) can be written as

rω = σx1 + x2 + KHi +H(ID),

and substituting r with α− x1 from (1), we obtain the following equation.

αω = (σ + ω)x1 + x2 + KHi +H(ID). (7)

Similarly, from equations (4) and (6), we obtain

α′ω′ = (σ′ + ω′)x1 + x2 + KHj +H(ID′). (8)
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Subtracting (8) from (7), we obtain

αω − α′ω′ = (σ + ω − σ′ − ω′)x1 + (KHi −KHj) +H(ID)−H(ID′).

From (2) and (5) we see that (KHi−KHj) can be substituted by (β−β′), thus
we finally obtain the equation

(σ + ω − σ′ − ω′)x1 = (αω − α′ω′)− (β − β′)− (H(ID)−H(ID′)).

All variables except x1 are known and the probability that (σ +ω−σ′−ω′) = 0
is negligible. Therefore, the attacker can recover the part of the private key x1

of C by solving the above linear equation.

3.2 Forgery of Purchase Scripts and Collusion of Vendors

The attacker E who knows the private key x1 of the customer C can obtain r
in equation (1), and x2 + KHi in equation (3) from r. Then he can construct
another script (α′′, β′′, ω′′) for the price σ′′ from (α, β, ω) as follows:

H(ID′′) = H(IDC‖IDV ′′‖IDB)
α′′ = α

β′′ = β

ω′′ = r−1[σ′′x1 + (x2 + KHi) +H(ID′′)]

It is easily checked that (IDC , IDB, (α′′, β′′, ω′′)) is a valid purchase script.
Therefore the attacker can forge valid purchase scripts, and buy other products
from a vendor V′′, impersonating C, using the forged scripts.

3.3 Attack Scenarios

Overspending. The electronic cash of the proposed payment system has a
property of implicit divisibility. That is, a customer who has withdrawn elec-
tronic money of σ0-value from his account can purchase any product whose
price is σ ≤ σ0. However, since vendors do not verify the amount of money
remaing, the customers can intentionally overspend.

Forgery of Money. Since the payment scripts are transmitted via wireless
channel, malicious parties may easily eavesdrop on transmission. Hence the at-
tacker may obtain two payment scripts of a victim, (α, β, ω) and (α′, β′, ω′), for
the prices of σ and σ′ respectively.

According to Section 3.1 and Section 3.2, the attacker can produce a forged
payment script (α′′, β′′, ω′′) for a product of price σ′′ and impersonate the victim
to any vendors. In this case, the attacker sets σ′′ to any value since vendors do
not verify the amount of money remaining.

If a vendor executes Deposit protocol with the forged script (α′′, β′′, ω′′) and
Deposit protocol with (α, β, ω) was executed already (by another vendor), then
gKHi is presented twice. Then bank would conclude that the victim has doubly
spent the issued money illegally.
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Collusion of Two Vendors. If at least two vendors collude, they can extract
the private key x1 of the victim as described in Section 3.1 and Section 3.2, and
forge a payment script (α′′, β′′, ω′′) for a product of price σ′′ such that σ′′ > σ. If
the vendor sends the forged script at the Deposit protocol instead of the original
script (α, β, ω), then the bank shall accept the forged payment script as a valid
one. In this case, the bank may conclude that the victim has illegally spent the
issued money over the limit σ0.

4 Conclusions

We have analyzed the mobile payment system proposed at WISA 2002. Because
the purchase script is not authenticated, we could forge new valid scripts by
extracting a part of the private key of the customer.

We suggest that irreversible operations such as modular exponentiation
should be involved for the payment system to be secure. Moreover, the sig-
nature of customers and vendors might be involved to authenticate the money
remaining.
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Abstract. Verifiable encryption allows a receiver, who cannot decrypt
the ciphertext, to verify what has been encrypted. This technique is
widely used in fair exchange to convince a receiver that he/she can later
obtain the requested item by presenting the item in an encrypted form to
a TTP (Trusted Third Party). In this paper, we apply verifiable encryp-
tion to offline payment systems based on the representation problem
to provide the payment atomicity. Our verifiable encryption uses the
Naccache-Stern cryptosystem and a proof of equality of discrete loga-
rithms from different groups. Although additional cost is required during
payments, we show that the cost is reasonable. Furthermore, we have im-
proved the efficiency of dispute settlement significantly. In our method,
the TTP does not have to interact with any other party other than the
one who filed a complaint to resolve disputes.

1 Introduction

Generally, a payment protocol using e-cash involves exchanging e-cash with dig-
ital goods between a client and a shop over the network. Normally, clients and
shops do not trust each other and protocol executions can be pre-terminated
accidentally or deliberately. Therefore, payment atomicity must be preserved to
prevent a party from gaining an illegal profit or suffering a loss. Tygar [1] was
the first to address this issue. But his method requires online participation of the
TTP, thus cannot be considered as a solution to fair offline payment. Boyd and
Foo [2] used an optimistic approach, meaning that the TTP participates only
when disputes arise. Since their method is based on convertible signatures, their
method inherently does not consider anonymous participation of clients. Xu et
al. [3] proposed an another optimistic method that considers client’s anonymity.
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Researches on providing fairness in payment using offline e-cash have only
received a small attention, compared to vast amount of researches on e-cash. On
the other hand, fair exchange [4, 5] has been studied for some time. People gen-
erally think that fairness of payment using offline e-cash can be easily provided
by applying research results from fair exchange. But to date, researches on fair
exchange have not considered anonymous participation of players involved and
their main focus was on exchanging participant’s digital signatures fairly [5, 6].
Compared to this, anonymity is a very important property in offline e-cash sys-
tems. Moreover, in these systems, instead of exchanging participant’s signatures,
digital goods are exchanged with e-cash, which is normally issued by a bank.

Recently, verifiable encryption has emerged as a key tool in building efficient
fair exchange protocols [5, 6]. Verifiable encryption allows a sender to encrypt
a message with a designated public-key and subsequently convinces a receiver,
who cannot decrypt the ciphertext, that the ciphertext actually contains such
message. In fair exchange, before exchanging actual items, they are exchanged
in an encrypted form using verifiable encryption. Actually, only one of the items
being exchanged is required to be encrypted. The encryption is done using the
public key of the TTP. Therefore, if a receiver does not receive the actual item,
he/she can present the item in an encrypted form to the TTP and obtain it.

Most of the current offline e-cash systems provide anonymity of clients. What
follows are the basic requirements that must be met by methods used to preserve
payment atomicity in such systems.

– Clients participate anonymously. Additional steps taken to provide payment
atomicity should not affect clients’ anonymity. Moreover, clients should not
have to reveal their identity to file a complaint. If they are required to do
so, they may give up their rights for the sake of preserving their anonymity.

– TTP should only participate when disputes arise.
– Except the participating client and the shop, others should not be able to

obtain the items being exchanged. This means only the shop should be able to
deposit the used coins and only the client should be able to receive the goods.
The former is provided by including the shop’s identity in the challenge of
the payment. The latter is provided by exchanging the goods encrypted.

In this paper, we propose a new method of providing the payment atomic-
ity for offline e-cash system based on the representation problem [7]. For this
purpose, we have devised a new method for verifiably encrypting DL(Discrete
Logarithm)s. This verifiable encryption uses the Naccache-Stern cryptosystem [8]
and a proof of equality of DLs from different groups [9]. Although such proof
normally requires an interval proof of DL [9], we show that we can do without
it. As a result, additional cost required during payments is reasonable. Further-
more, we have improved the efficiency of dispute settlement significantly. In our
method, the TTP does not have to interact with any other party other than the
one who filed a complaint to resolve disputes.
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Client U Shop S
C, A, B, OT, SigB(C), v, I

−−−−−−−−−−−−−−−−−−−−−→
verify SigB(C)

c = Hq(C‖A‖B‖yS‖TS) c, TS←−−−−−−−−−−−−−−−−−−−−− c = Hq(C‖A‖B‖yS‖TS)

s1 = a − cxU D = C/gv
V gD

s2 = b − cr s1, s2−−−−−−−−−−−−−−−−−−−−−→ A
?
= gs1

U gs2
T Dc

item←−−−−−−−−−−−−−−−−−−−−− B
?
= ys2

OT (OT )c

Fig. 1. The Basic Payment Protocol.

2 Related Work

In this paper, unless otherwise stated, all operations are performed in a subgroup
Gq of order q in Z∗

p, where p and q are large prime numbers such that q|(p− 1).

2.1 Electronic Payment System

In this paper, we use an e-cash system similar to the one proposed by Solages and
Traore [10] to demonstrate our new method. In this system, a coin is represented
as C = gxU

U gv
V gr

T gD, where gU , gV , gT , and gD are generators of Gq, xU represents
the client’s private identifier, v is the face value of the coin, and r is a blind factor.
Clients perform a restrictive blind signature with the bank to withdraw a coin.
The resulting coin is represented by the following tuple:

A = ga
Ugb

T , B = yb
OT , OT = yr

OT , C, SigB(A||B||OT ||C),

where ‘||’ denotes bitwise concatenation, yOT = g
x−1

OT

T represents the TTP’s owner
tracing public key, and SigB(A||B||OT ||C) represents the bank’s signature on
A||B||OT ||C. From now on, we will use SigB(C) instead of SigB(A||B||OT ||C)
to simplify our discussion. A, B, and OT are values committed by the client
during the blind signature and are used in the payment protocol.

In a coin-based system, since the system does not provide all possible denom-
inations, clients normally pay using several coins. But to simplify our discussion,
we assume that clients always use a single coin during payments. The payment
protocol of this system is depicted in Fig. 1. In this protocol, I denotes the item
identifier, yS denotes the shop’s identifier, TS denotes the purchase date and
time, and Hq : {0, 1}∗ → Zq denotes a collision-resistant hash function. To buy
an item I, the client sends a coin C of value v and proves that he/she knows the
representation of C with respect to the generator tuple (gU , gV , gT , gD) [7]. The
client also proves that the owner of C can be traced using OT . The shop can
only deposit the coin if it has a valid challenge and responses. Since the shop’s
identifier yS is included in the calculation of the challenge c, only yS can claim
the money. For more detail on this system, refer to [10].
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Client U Shop S
kU ∈R Zq, KU = gkU

K KU−−−−−−−−−−−−−−−−−−−−−→ kS ∈R Zq, KS = gkS
K

{item}KUS←−−−−−−−−−−−−−−−−−−−−−
KUS = KkS

U

C, A, B, OT, SigB(C), v, I
−−−−−−−−−−−−−−−−−−−−−→

verify SigB(C)

challenge/response
←−−−−−−−−−−−−−−−−−−−→

verify response

KUS = KkU
S KS←−−−−−−−−−−−−−−−−−−−−−

decrypt and verify item

Fig. 2. Payment Protocol of Xu et al.

2.2 Xu et al.’s Method of Providing Payment Atomicity

Xu et al. [3] proposed a method for providing fair offline payment. In their
method, TTP participates only when disputes arise. Their payment protocol is
illustrated in Fig. 2. In this protocol, gK is a generator of Gq used in DH (Diffie-
Hellman) key [11]. The differences between this and the basic protocol are i)
the item is first sent to the client encrypted using a DH key, and ii) shops must
conform to a deposit deadline.

The shop sends its share of DH key only when it has received valid responses
from the client. Therefore, it is not possible for a shop to suffer a loss whereas
clients can suffer a loss. The reason behind this is that clients participate anony-
mously which makes it difficult for shops to file a complaint. As a result, only
clients can initiate the recovery protocol when the protocol is pre-terminated.
The followings are the circumstances which require a client to file a complaint.

– Case 1: The shop refuses to send its share of DH key after receiving valid
responses.

– Case 2: The shop deliberately or accidentally sent a wrong item.

Filing a complaint can occur only when the deposit deadline is over. Although
using a deadline reduces the number of possible states that the TTP has to
consider, it is neither flexible nor convenient for clients and shops. We can remove
this deadline, but it complicates dispute settlement.

In case 1, the client files a complaint to the TTP by sending the coin involved
in the payment to the TTP. The client also proves the ownership of the coin by
proving that he/she knows the representation of the coin. The TTP contacts
the bank and asks whether the coin has been deposited or not. If the coin has
been deposited, the TTP demands the shop to give its share of the decryption
key. If the shop does not comply, it faces a legal action. If the coin has not been
deposited, the TTP cancels the payment and the coin is refunded.

In case 2, in Xu et al.’s method, it is not easy to prove that the shop has sent
a wrong item. Although the item identifier is included in the challenge of the
payment, this is insufficient for proving what has been exchanged. Furthermore,
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since the bank gets to know what has been purchased, it affects unobservability
of the payment. Invoice such as SigS({item}K ||I||price||C||yS ||TS) can be used to
solve this problem [12]. This invoice is sent to the client along with the encrypted
item. This invoice can later be used as a proof of what the shop has sent and
that the shop actually participated in the payment.

3 Mathematical Background

3.1 Naccache-Stern Public Key Cryptosystem

Naccache and Stern [8] proposed a new public key cryptosystem based on the
hardness of computing higher residues modulo a composite RSA integer. We
will refer to this cryptosystem as NS cryptosystem from now on. They proposed
two versions: one deterministic and the other probabilistic. In this paper, we use
the deterministic one. To setup this system, we need to choose a RSA modulus
n = PQ, σ, and g ∈ Z∗

n. As usual P and Q are large primes and n must be
at least 768 bits long. σ is a squarefree odd B-smooth integer that must be at
least 160 bits long, where B is a small integer about 10 bits long. This σ must
divide φ(n) and be prime to φ(n)/σ. The order of g must be a large multiple
of σ. The generation of modulus is done as follows. First, k small odd distinct
primes pi are picked, where k is even. Then set u =

∏k/2
i=1 pi, v =

∏k
k/2+1 pi,

and σ = uv =
∏k

i=1 pi. Finally, pick two large primes a and b such that both
P = 2au + 1 and Q = 2bv + 1 are primes. g is selected by randomly choosing it
and testing whether or not it has order φ(n)/4.

Encryption of message m < σ is done by c = gm mod n. Decryption of c is
based on the Chinese remainder theorem. First, the following is computed for
all prime factors pi of σ, where yi = (m−mi)/pi.

ci = c
φ(n)

pi ≡ g
m φ(n)

pi ≡ g
(mi+yipi)φ(n)

pi ≡ g
miφ(n)

pi gyiφ(n) ≡ g
miφ(n)

pi (mod n)

Then, we compare ci with all possible powers g
jφ(n)

pi , j = 1, . . . , pi to compute
mi, which is congruent to m modulo pi, for each ci. Finally, we compute the si-
multaneous congruences m ≡ mi (mod pi) using the Chinese remainder theorem
to obtain m. For more detail on this system, refer to [8].

Assumption 1. NS cryptosystem is secure if computing higher residues modulo
n and factoring n are computationally infeasible, where n is the RSA modulus
of the system.

3.2 Proofs of Equality of Discrete Logarithms
from Different Groups

In our proposed payment method, instead of sending s1, we send E = gs1
U along

with V = gs1 mod n, which is an encryption of s1 using the NS cryptosystem,
and prove loggU

E = logg V . Since the order of Gq and Z∗
n are different, we need

a proof of equality of DLs from different groups.
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Prover P Verifier V
w ∈R Zq

W1 = gw
1 , W2 = gw

2 W1, W2−−−−−−−−−−−−−→ c ∈R {0, 1}k

s = w − cx c←−−−−−−−−−−−−−
s−−−−−−−−−−−−−→ W1

?≡ gs
1y

c
1, W2

?≡ gs
2y

c
2

Fig. 3. A Proof of Equality of Discrete Logarithms from the Same Group.

Proofs of Equality of Discrete Logarithms from the Same Group. We
can prove the equality of DLs of y1 ∈ Gq and y2 ∈ Gq to the bases g1 and g2,
respectively, using the proof given in Fig. 3 [13]. One can think that the equality
of DLs from different groups can also be proven using the proof depicted in
Fig. 3 by computing s in Z without applying the modulus. However, due to the
following attack, this is not possible.

Attack 1. Let G1 = 〈g1〉 and G2 = 〈g2〉 be two distinct groups of order q1 and
q2, respectively. We assume q1 < q2 and gcd(q1, q2) = 1. Let y1 = gx

1 , y2 = gx′
2 ,

W1 = gw
1 , and W2 = gw′

2 , where x = x′. In this case, if a prover knows the
orders of G1 and G2, the prover can cheat by computing s satisfying s ≡ w− cx
(mod q1) and s ≡ w′− cx′ (mod q2) using the Chinese remainder theorem. This
s is unique in Zq1q2 .

We must note that if s is below q1 the w−cx must be equal to w′−cx′. However,
since a prover can only guess c with the probability of 1/2k, we can disregard this
possibility. Therefore, if we can somehow limit s’s range, then we can prevent
Attack 1. To limit s’s range, we have to also limit x’s and w’s range.

Interval Proofs of Discrete Logarithm. A prover can use an interval proof
of DL to prove his/her knowledge of DL, while simultaneously proving that DL
lies in a specified interval in zero-knowledge style. An interval proof of DL using
binary challenge is depicted in Fig. 4 [9]. In this proof, q must be larger than
2l+1, and the prover is proving that x lies in the interval (−2l, 2l). However,
the prover can only carry out this protocol successfully, if x lies in the interval
(−2l−2, 2l−2). Thus, only membership to a much larger interval can be proven.
To see why the verifier is convinced that x lies in (−2l, 2l), we must consider the
knowledge extractor. Using the standard rewinding technique, the knowledge
extractor can acquire two accepting transcripts with the same W , but different
c’s and s’s. Therefore, from gsyc = gs′

yc′ , the extractor can compute x = s′−s
c−c′ .

Since the verifier checks that s’s lie in the interval (−2l−1, 2l−1), s′ − s lies in
the interval (−2l, 2l). Moreover, since c’s are binary, x = ±(s′− s). Therefore, x
lies in the interval (−2l, 2l).

Camenisch and Michels proposed a more efficient version based on the fol-
lowing assumption [9].
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Prover P Verifier V
w ∈R {−2l−2, . . . , 2l−2}
W = gw W−−−−−−−−−−−−−→ c ∈R {0, 1}

c←−−−−−−−−−−−−−
s = w − cx (in Z) s−−−−−−−−−−−−−→ −2l−1

?
< s

?
< 2l−1, W

?≡ gsyc

Fig. 4. An Interval Proof of Discrete Logarithm using Binary Challenge.

Prover P Verifier V
w ∈R Zq

W1 = gw mod n, W2 = gw
U W1, W2−−−−−−−−−−−→ c ∈R {0, 1}k

c←−−−−−−−−−−−
s = w − cx (in Z) s−−−−−−−−−−−→ W1

?≡ gsV c (mod n), W2
?
= gs

UEc

Fig. 5. ZKProof(loggU
E = logg V ).

Assumption 2 (Strong RSA). Given only a sufficiently large RSA modulus n and
z ∈ Z

∗
n, it is computationally infeasible to find a pair (u, e) ∈ Z

∗
n × Z such that

e > 1 and z ≡ ue (mod n).

Under the Assumption 2, we can use non-binary challenges when performing
interval proofs. This is due to the fact that c−c′ always divides s′−s, which allows
a verifier to draw conclusions about the size of the prover’s secret. We now show
why c−c′|s′−s always holds under the Assumption 2. Let d = gcd(s′−s, c−c′),
then we can use the extended Euclidean algorithm to find u and v, satisfying
u c−c′

d + v s′−s
d = 1. From this, we can see that the following holds.

g = gu c−c′
d +v s′−s

d = gu c−c′
d (gs′−s)

v
d = gu c−c′

d (yc−c′)
v
d = (guyv)

c−c′
d

But if d < c− c′ then we can compute a non trivial root of g, which contradicts
the Assumption 2. Therefore, d = c − c′, which means (c − c′)|(s′ − s). To use
this assumption, we have to add a proof to the Fig. 4 that proves the knowledge
of DL in RSA modulus.

Now let’s consider the knowledge extractor in this case. Let’s assume k-bit
challenge is used. Since x = s′−s

c−c′ , −2l < s′ − s < 2l, and 1 ≤ |c− c′| < 2k, x lies
in the interval (−2l, 2l). Although we can efficiently prove the interval using this
method, the required range of x is further decreased to (−2l−2−k, 2l−2−k). This
does not cause any problem if x is chosen from this range, but direct use of this
proof is difficult when x is computed and may have random values.
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4 Fair Offline Payment Using Verifiable Encryption

4.1 Verifiable Encryption of Payment

In our method, we verifiably encrypt the payment before sending it to the shop
to provide the payment atomicity. This can be achieved by either encrypting
SigB(C) or encrypting the responses that clients sends to the shop. The former
is not flexible in that we need to apply different verifiable encryption techniques
for each different signature schemes used to issue e-cash. Therefore, we choose
the latter. In the protocol given in Fig. 1, there are two responses which are sent
to the shop. Only one of these responses needs to be verifiably encrypted. We
choose to verifiably encrypt s1. We send E = gs1

U , s2, and V = gs1 mod n to
the shop, where n and g are public key of the NS cryptosystem of the TTP, and
proves that loggU

E = logg V in zero knowledge style using the proof depicted
in Fig. 5. In proofs explained in subsection 3.2, it is assumed that the prover
knows the order of both groups. In our case, the client does not know the order
of Z∗

n, while he/she knows the order of Gq. Therefore, Attack 1 is not possible
in our setting. However, there is an another attack that must be considered.

Attack 2. Let G1 = 〈g1〉 and G2 = 〈g2〉 be two distinct groups of order q1 and q2,
respectively. We assume q1 < q2 and gcd(q1, q2) = 1. Let y1 = gx

1 and y2 = gx′
2 ,

where x = x′ but x ≡ x′ (mod q1). In this case, the prover can succeed in
falsely proving the equality using the proof given in Fig. 5. Moreover, when y2

is decrypted, the resulting value will not be x′ but x′ mod q2.

In our situation, the TTP can detect this kind of attack. Moreover, the TTP
can use the tracing mechanism of e-cash to find the person responsible for it.
Therefore, we do not use an additional interval proof to prevent Attack 2.

Claim 1. In our setting, it is safe to remove the interval proof from proofs of
equality of DLs from different groups.

Proof Sketch. In our setting, since the prover does not know the order of one
of the group, Attack 1 is not possible. However, Attack 2 is still possible. To
prevent this attack, an interval proof of discrete logarithm is required. However,
we do not have to resort to interval proofs due to the following reasons. First,
the TTP can detect this attack and can use the tracing mechanism of the e-cash
to find the person responsible for it. Second, since only one of the response is
verifiable encrypted and the false value used in the proof must be congruent
to the original value modulo the order of the smaller group, only the person
who knows the representation of the e-cash can attempt this kind of attack.
Other ways of cheating, such as guessing the correct s satisfying the Attack 1,
or guessing the correct challenge c, can be made computationally infeasible by
setting the system parameters appropriately.

We have to consider whether it is safe for the shop to verify that A is con-
gruent to Egs2

T Dc modulo p in Fig. 1 instead of receiving s1 and verifying as
before.



294 Sangjin Kim and Heekuck Oh

Claim 2. It is secure for the shop to verify that A is congruent to Egs2Dc modulo
p in Fig. 1, instead of receiving s1 and verifying that A is congruent to gs1

U gs2
T Dc

modulo p, if the client also has to prove his/her knowledge of loggU
E.

Proof Sketch. An attacker, who does not know the representation of C, can
pass this verification by randomly selecting s′2 and computing E′ = Ag

−s′
2

T D−c.
However, by DL assumption, it is computationally infeasible for the attacker
to compute loggU

E′. Therefore, if we require the client to additionally prove
his/her knowledge of loggU

E, it is secure to verify in this way.

In our proposed payment protocol, a client must perform ZKProof(loggU
E =

logg V ), which cannot be performed successfully if the client does not know
loggU

E. Therefore, we can justifiably claim the following.

Claim 3. Our way of verifiably encrypting the response is secure and does not
effect the security of the rest of the protocol execution.

4.2 Payment Protocol Preserving Payment Atomicity

We assume that (n = PQ, g) are TTP’s public key of the NS cryptosystem such
that σ > q, where σ is one of the private key of the TTP. Our proposed payment
protocol is depicted in Fig. 6. In this protocol, H : {0, 1}∗ → {0, 1}l denotes a
collision-resistant hash function different to Hq. The shop uses xS = loggS

yS as
the signing key when making invoices, where gS is a generator of Gq. We assume
Schnorr signature scheme [14] is used for this purpose. The differences between
our method and Xu et al.’s method can be summarized as follows.

Difference 1. We use invoices which include among others the digest of the
shop’s share of DH key, the client’s share of DH key, and the digest of the
encrypted item.
An invoice is generated by the shop by signing necessary information with its
private key. This invoice serves as a proof that the payment has actually oc-
curred. This invoice is used only to settle disputes. If we removed this invoice,
there is nothing in the payment that a client cannot do by him/herself. As a
result, without it, the TTP cannot know whether the payment transcript is gen-
uine or a faked one. In other words, the TTP always have to interact with the
bank to see if the given transcript has been deposited in the bank. By using
invoices, we can remove the need for the TTP to contact the bank and clarify
dispute settlement. Since the shares of DH key are included in the invoice, each
party cannot present a different share other than the one included in it. Since
the digest of the encrypted item is included in the invoice, disputes arising from
a shop accidentally or deliberately sending a wrong item can be resolved without
any problem. Xu et al. did not cover this kind of dispute.

Difference 2. The response s1 is verifiably encrypted.
Since the response is sent verifiably encrypted, the shop is convinced that it can
present V to the TTP and get s1 needed for it to deposit the received coin. As
a result, it is safe for the shop to terminate before the client does.
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Client U Shop S
kU ∈R Zq

KU = gkU
K

C, A, B, OT, SigB(C), v, I, KU−−−−−−−−−−−−−−−−−−−−−−−−→
verify SigB(C)

kS ∈R Zq

KS = gkS
K

KUS = (KU )kS

verify invoice {item}KUS , invoice, H(KS), TS←−−−−−−−−−−−−−−−−−−−−−−−−
make invoice

c = Hq(C‖A‖B‖yS‖TS) c = Hq(C‖A‖B‖yS‖TS)
s1 = a − cxU D = C/gv

V gD

s2 = b − cr
E = gs1

U

V = gs1 mod n s2, E, V, Proof(E, V )
−−−−−−−−−−−−−−−−−−−−−−−−→

verify Proof(E, V )

A
?
= Egs2

T Dc

KUS = (KS)kU KS←−−−−−−−−−−−−−−−−−−−−−−−− B
?
= ys2

OT (OT )c

decrypt and verify item s1−−−−−−−−−−−−−−−−−−−−−−−−→

invoice = SigS(H({item}KUS )||I ||price||C||yS ||TS ||H(KS)||KU )
Proof(E, V ) = ZKProof(loggU

E = logg V )

Fig. 6. The Proposed Payment Protocol.

Difference 3. The shop terminates the protocol first instead of the client.
This difference results from the Difference 2.

As with Xu et al.’s method, we impose a deposit deadline on shops. Imposing
a deadline may be inconvenient for clients, since they must wait until the deadline
is over to file a complaint. The shops must also deposit received coins before the
deadline. However, it simplifies dispute settlement. Especially, the TTP does not
have to interact with anyone other than the one who filed a complaint to resolve
disputes. Using a deadline or not may be selected as an option.

4.3 Dispute Settlement Procedure

Disputes can occur only after the client has given s2, E, V , and Proof(E, V ).
Therefore, we do not think there are other possible disputes other than the
following three examples. In all the examples, the TTP stores the received in-
formation to log requests.

Dispute Example 1. The client has given valid E, V , s2, and Proof(E, V ) but
the shop has refused to give its share of DH key.
In this case, after the deposit deadline is over, the client can execute the resolve
protocol given in Fig. 7 to request the shop’s share of DH key. The result of
executing the protocol can be divided into four cases shown in Table 1. If the
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Client U TTP T
PayTrans−−−−−−−−−−−−−−−−−−−→ verify PayTrans

Proof(C)
←−−−−−−−−−−−−−−−−−−→

verify Proof(C)

. .. . . .. . . .. . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . . .. . . .. . . .. . . .. . . .. . . .. . . . .. . . .. . . .. . . .. . . .. . . .. . . . .. . . .

K = (KS)kU KS←−−−−−−−−−−−−−−−−−−− If yS has already contacted T
decrypt and verify item
. .. . . .. . . .. . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . . .. . . .. . . .. . . .. . . .. . . .. . . . .. . . .. . . .. . . .. . . .. . . .. . . . .. . . .

affidavitTypeA←−−−−−−−−−−−−−−−−−−− If yS has not yet contacted T

PayTrans = {C||A||B||OT ||SigB(C)||v||KU ||H(KS)||yS||TS ||I ||H({item}KUS )||
invoice||s2||E||V ||Proof(E, V )}

Proof(C) = ZKProof(C = gxU
U gv

V gr
T gD)

Fig. 7. The Client’s Resolve Protocol A.

Shop S TTP T
PayTrans∗,KS−−−−−−−−−−−−−−−−−−−−−→ verify PayTrans, KS

s1←−−−−−−−−−−−−−−−−−−−−− decrypt V

* PayTrans is same as PayTrans used in Fig. 7

Fig. 8. The Shop’s Resolve Protocol.

client is honest, it means that the client has not given s1 to the shop. Since the
shop cannot decrypt V by itself, the shop must ask the TTP to decrypt V for it
to deposit C in the bank. If the client is dishonest, he/she may try to illegally
acquire an affidavit even though he/she has received the shop’s share of DH
key. However, as you can see in the Table 1, the client’s refund request would
either be rejected or carry out in a normal way. This is to prevent a client from
refunding then spending it or vice versa, which would result in double spending.

The resolve protocol given in Fig. 7 is performed as follows. The client sends
the payment transcript PayTrans and proves the ownership of C by showing that
he/she knows the representation of C. This proof is denoted as ZKProof(C =
gxU

U gv
V gr

T gD). The TTP verifies PayTrans and the proof. If everything is con-
firmed, the TTP sends the shop’s share of DH key or an affidavit of type A to
the client depending on whether the shop has already contacted the TTP or not.
The affidavit of type A is a digital signature issued by the TTP which states
that the payment has been cancelled because the client did not receive the shop’s
share of DH key. The client can refund C at the bank using this affidavit.

Dispute Example 2. The shop has given its correct share of DH key, but the
client has refused to give s1.



Fair Offline Payment Using Verifiable Encryption 297

Table 1. The Possible Results of Executing the Client’s Resolve Protocol A.

the client is honest∗
the shop has contacted the TTP the shop has not contacted the TTP

client obtainings the shop’s share of DH key affidavit of type A

refund method normal∗∗∗

case case 1-A case 1-B

the client is dishonest∗∗
the shop has deposited the coin the shop has not deposited the coin

client obtainings affidavit of type A affidavit of type A

refund method the bank rejects refund request normal

case case 1-C case 1-D

* The client actually did not receive the shop’s share of DH key.
** The client actually received the shop’s share of DH key.
*** The normal way to refund a coin is to pay the coin to the bank using the normal
payment protocol.

Client U TTP T
PayTrans∗,{item}KUS , kU , KS−−−−−−−−−−−−−−−−−−−−−−−−−−→

verify PayTrans, kU , KS

Proof(C)
←−−−−−−−−−−−−−−−−−−−−−−−−−→

verify Proof(C)

KUS = (KS)kU

decrypt {item}KUS

affidavitTypeB←−−−−−−−−−−−−−−−−−−−−−−−−−− I
?
= item

* PayTrans is same as PayTrans used in Fig. 7

Fig. 9. The Client’s Resolve Protocol B.

In this case, the shop executes the resolve protocol given in Fig. 8. This must
be done before the deadline is over. The shop gives the payment transcript Pay-
Trans and its share of DH key. The TTP first verifies the PayTrans and the key.
If everything is confirmed, it decrypts V and sends s1 to the shop. However, if
the decrypted value s1 does not satisfy A

?= gs1
U gs2

T Dc, the TTP initiates the
tracing mechanism to find the client responsible for this wrong doing. We must
note that the TTP, that resolves disputes, must be different to the TTP, that
has the tracing capabilities, in order to preserve the client’s anonymity.

Dispute Example 3. The received item is not the one requested by the client.
Unlike Example 1, since we use digitally signed invoices, the client cannot deceive
the TTP in this case. When a client receives a wrong item, he/she can execute
the resolve protocol given in Fig. 9 to report it. This protocol is performed as
follows. The client sends the PayTrans along with the kU , KS , and {item}KUS

to the TTP. Here, kU must be protected from eavesdroppers, since it can allow
them to decrypt the item. The TTP first verifies PayTrans. It then verify KS
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Table 2. The Possible Results of Presenting an Affidavit of Type B to the Bank.

the shop has deposited the coin the shop has not deposited the coin

refund method anonymously refresh∗ normal

case case 3-A case 3-B

* Refreshing a coin means exchanging the coin with a new coin.

using H(KS) and kU using KU . The TTP then computes KUS and decrypts
the encrypted item and verifies whether or not the item is the one identified by
I. This cannot be done electronically. If the shop has sent a wrong item, the
TTP issues an affidavit of type B which states that the shop has sent a wrong
item and the client can refund his/her money. If a client contacts the bank and
provides an affidavit of type B, the bank checks whether the shop has deposited
the involved payment or not. The possible results of presenting an affidavit of
type B to the bank are shown in the Table 2. Unlike Example 1, if the shop has
deposited it, the bank anonymously refreshes the coin for the client and takes
necessary actions to get the money back from the shop. The protocol used to
refresh a coin anonymously is omitted in this paper due to space limitation. The
bank will also keep the payment transcript in the deposit database just in case
the client re-spends C again. As with Example 1, if the shop has not deposited
it, the bank will ask the client to refund it in the normal way.

5 System Analysis

In this section, we will discuss about why our proposed method preserves pay-
ment atomicity.

5.1 Atomicity

Claim 4. A client cannot obtain an illegal profit.

Proof Sketch. Once the client receives {item}KUS and H(KS) from the shop, the
client can acquire the item if he/she can compute KS from H(KS). Since H is
a one-way hash function, this is computationally infeasible. After receiving KS

from the shop, the client can terminate the protocol without giving s1 to the
shop. However, since the shop already has V , the shop can execute the resolve
protocol given in Fig. 8 to get s1 from the TTP. Although, a client can send
an invalid V to the shop during the payment, by the Claim 1, the client cannot
obtain an illegal profit by sending a false V . A client can acquire an affidavit
of type A or type B by performing resolve protocols with the TTP. The client
can only anonymously refresh a coin with an affidavit of type B. Furthermore,
this is only possible if the shop has deposited the payment. As a result, spending
then refunding or vice versa will be detected as before. Therefore, a client cannot
obtain an illegal profit.
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Claim 5. A shop cannot obtain an illegal profit.

Proof Sketch. Until the shop receives valid responses from the client, the shop
cannot deposit the received coin. By Assumption 1, it is computationally infea-
sible for the shop to decrypt V by itself. Moreover, by the DL assumption, the
shop cannot compute s1 from E either. Once the shop receives V , the shop can
ask the TTP to decrypt it without giving its share of DH key to the client. The
shop, however, has to give the correct share to the TTP when requesting this de-
cryption. Therefore, in this case, the client can execute the resolve protocol given
in Fig. 7 to obtain the shop’s share of DH key. The shop may send a garbage
data or a wrong item to the client instead of the requested item. However, since
the digest of the encrypted item and the shares of DH key are included in the
invoice, the shop cannot falsely deny its misconduct. Therefore, a shop cannot
obtain an illegal profit.

Claim 6. Our proposed method provides payment atomicity.

Proof Sketch. There are only four cases to be considered.

– case 1: Everyone succeeds. This means that atomicity is not violated.
– case 2: The shop obtained an illegal profit. By Claim 5, this cannot happen.
– case 3: The client obtained an illegal profit. By Claim 4, this cannot happen.
– case 4: Both received nothing. This also means that payment atomicity is

not violated.

From case 1 to 4, we can conclude that our method provides payment atomicity.

5.2 Security

Claim 7. Our proposed method preserves client’s anonymity.

Proof Sketch. We will assume that the basic payment protocol preserves client’s
anonymity. It is easy to see that additional steps (E, V , Proof(E, V )) taken can-
not be used to identify the owner of C. In client’s resolve protocol A and B, the
client proves the ownership of C using a proof of knowledge of a representation.
This proof does not also reveal the identity of the owner of C. A client may
need to refund the spent coin as a result of a dispute. We have also provided the
ways to preserve a client’s anonymity in this case. Therefore, a client can remain
anonymous even if disputes arise.

It is obvious that the TTP participates only when disputes arise. The shop
sends an item encrypted using DH key. Therefore, a bystander cannot acquire
the item without breaking the DH assumption. Moreover, even the TTP cannot
acquire the item. If disputes of the kind given in Dispute Example 3 occur, the
TTP receives enough information to compute the key KUS . However, decryption
would only result in garbage data or a wrong item.
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6 Conclusion

In this paper, we have proposed a new method of providing the payment atomic-
ity in offline e-cash system based on the representation problem. For this purpose,
we have devised a verifiable encryption scheme that uses the NS cryptosystem
and a proof of equality of DLs from different groups. Although using this veri-
fiable encryption requires additional proof and messages during payments, the
extra cost is reasonable in that we have removed the interval proof from equality
proof from different groups. This way of providing the payment atomicity can
be applied to any offline e-cash system based on the representation problem.
Moreover, it can be applied to systems that uses challenge-and-response where
response is verified by raising itself to a power. Furthermore, we have improved
the efficiency of dispute settlement significantly. In our method, the TTP does
not have to interact with any other party other than the one who filed a com-
plaint to resolve disputes.

Although, we think that the additional cost of our system is reasonable, a
more efficient verifiable encryption scheme would further enhance the system
performance. In this system, we have assumed that a coin is exchanged for a
single digital item. In the future, we will consider how payment atomicity can be
preserved when several coins are involved or when several items are exchanged
for a single payment.
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Abstract. Traditionally, the security of symmetric-key based systems
heavily relies on the security of shared keys. In this paper, we present a
new session key generation technique for internet transactions that elim-
inates the need of storing long-term shared key which makes the system
insecure against key compromise during transactions. The generation of
each set of session keys is based on randomly chosen preference keys. The
higher number the transactions have been performed, the less chance the
system is being compromised. We show that the proposed technique is
secure against various kinds of attacks. Finally, the proposed technique
can be applied to any kind of internet applications that deploy shared
secrets. We demonstrate the practical usefulness of our technique by
applying it to credit-card payment systems. The results show that our
technique enhance their security considerably.

Keywords: credit-card payment, key generation, electronic payment
systems

1 Introduction

Nowadays, several internet services such as file transfer, web services, or viewing
electronic articles, deploy shared secrets. In a shared-key based system, a user
and the system (or another user) share a secret key that can be used for several
purposes:

– Credential or Authentication Token: the key can be used to authenti-
cate the user to the system e.g. access password. In some applications such as
credit-card payment, a cardholder (or a client) sends her credit-card number
including payment-related information to a merchant over a secure channel,
such as SSL [1], in order to request for a payment to the merchant. The
merchant then forwards such information to a card issuer to authorize the
payment. As the credit-card number is shared between the cardholder and
the card issuer, the card issuer can verify that the cardholder’s request is
valid. Then, the card issuer deducts the money from the cardholder’s account

C.H. Lim and M. Yung (Eds.): WISA 2004, LNCS 3325, pp. 302–316, 2004.
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and transfers to the merchant’s account. In the rest of the paper, the term
client and issuer refer to the cardholder and the card issuer, respectively.

– Cryptographic Operations: the shared key can be used as the key for
encrypting or hashing a message sent between users. For example, Alice
sends a message, encrypted with a shared key between herself and Bob, to
Bob securely over an open network. If Bob did not previously generate this
message, he can infer that this message has been originated by Alice.

Among the applications of shared keys stated above, on one hand, the access
password needs to be updated periodically, and more frequently for encrypting
keys in order to enhance security of the system. However, the higher frequency
the keys are updated, the lower performance the system will be. On the other
hand, the credit-card number which is static, reusable information transferred
in every transaction is possible to be eavesdropped by an attacker.

In this paper, we present a new key generation technique which is able to
solve the problems stated above. We select credit-card payment as a reference
scenario to illustrate our idea, yet our technique can be applied to other kinds
of internet applications.

1.1 Credit-Card Payments over the Internet

In a credit-card payment system, a client who opens an account with a bank
wants to make a purchase to a merchant over the Internet. The client is issued
a credit card to make a purchase physically in shops or over the Internet.

Various kinds of credit-card payment systems have been implemented [1, 6].
In credit-card payment over SSL [1], after the SSL connection is established,
the client supplies her semi-secret 16-digit credit-card number and relevant in-
formation, such as date of birth and billing address, to authenticate herself to
an issuer. In SET (Secure Electronic Transaction) protocol [6], the credit-card
information is encrypted with the public key of a payment gateway (a party who
acts on behalf of the issuer) and signed with the client’s private key. Once it is
transferred to the issuer, the issuer can infer that this request is originated by
the client and it contains the valid credit-card information.

It can be seen that the most sensitive information in credit-card payment
systems is credit-card information. Several security issues related to exposing
credit-card information have been reported [7, 4]. In an SSL-based credit-card
payment system, although the credit-card information is not exposed to external
parties, it is still revealed to the merchant who is considered as an untrusted
party. In SET protocol [6], encrypted credit-card information is decrypted by
the payment gateway and then forwarded to the issuer. This problem may arise
if the payment gateway and the issuer are different parties.

Moreover, the credit-card number is considered as long-term, reusable, semi-
secret information. It is printed on the card which is visible to everyone, and
the client’s information such as date of birth and billing address is not difficult
to find out. Although the credit-card number is replaced by a secret known
only between the client and the issuer, it still has to be transferred in every
transaction. Therefore, it is vulnerable to various kinds of attacks.
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Several techniques have been proposed to secure credit-card information
transfer over the Internet [4, 7, 5, 2]. Credit-card number blinding technique was
proposed [4] by applying HMAC to the credit-card number and a random num-
ber. Then both the output of HMAC and the random number are sent to the
issuer for verification. Recently, the concepts of disposable credit-card numbers
(DCNs in short) have been proposed in online scheme [8] and offline schemes [7, 5,
2]. These techniques allow a client to perform transactions with fresh credit-card
number in every transaction.

In this paper, we focus our consideration on offline DCN generation tech-
niques because they have advantages over online techniques. In particular, the
offline techniques do not require any connection between the client and the issuer
in order to generate a DCN in every transaction, whereas the online ones do.
The offline techniques therefore do not require any secure channel established
between the clients and the issuer.

Several offline DCN generation techniques have been proposed. In Rubin et
al.’s scheme [7], each DCN is generated from the encryption of payment infor-
mation with a long-term key shared between the client and the issuer. In Li
et al.’s scheme [5], a new DCN is generated from the hash of currently-used
DCN and a long-term key shared between the client and the issuer. Recently,
Kungpisdan et al. [2] proposed a disposable key generation technique based on
hashing of bit-shifting of long-term shared key. The keys generated from this
technique can be used either as DCNs or the keys for encryption and MAC
(Message Authentication Code).

However, the above schemes require long-term secret keys shared between
the client and the issuer in order to calculate DCNs. Although such keys are
not transferred during transactions, they are possible to be compromised by one
who intercepts DCNs and successfully deciphers it.

In this paper, we propose a technique to generate limited-use keys that does
not rely on any long-term shared key. The higher number the keys have been
used, the less chance the attacker can compromise the system. Our limited-use
secret keys can be used as single used credentials, such as DCNs, or the keys for
cryptographic operations, such as encryptions or keyed-hash functions.

This paper is organized as follows. Section 2 outlines existing offline DCN
generation techniques and discusses their security issues. Section 3 introduces the
proposed technique. In section 4, we apply the proposed technique to enhance
security of internet payment systems. Section 5 discusses about the security of
the proposed technique. Section 6 concludes our work.

2 Related Work

In this section, we outline three existing limited-use key generation techniques.
Section 2.1 presents Rubin et al.’s approach. In section 2.2, Li et al.’s approach
is outlined. In section 2.3, Kungpisdan et al.’s technique is discussed.

2.1 Rubin et al.’s Approach
Rubin et al. proposed an offline DCN generation technique [7]. This method elim-
inates the need of traditional long-term, reusable credit-card numbers. In this
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technique, a DCN (in [7], it is called a token) is generated from the encryption of
a set of payment-related information (called restrictions) that contains payment
amount, merchant’s identity, billing address, etc., with a long-term shared key
between a client and her issuer. For example, Alice wants to buy a 50-dollar
book from Bob’s store. She can generate the token T as follows:

T = {fifty-dollars-book-Bob’s-store}K

where K is the long-term key shared between Alice and her issuer. On receiving
T , the issuer decrypts it using K. This technique also deploys timestamp for
replay and collision protection. Note that the collision may occur when two
different payment information is encrypted either with the same key or with
different keys. Although, Rubin et al. argued that the system is secure against
various kinds of guessing attacks. To some degree, the encryption with long-term
shared key is vulnerable if an attacker has enough information and attempts to
decrypt DCN. The system will fail if the long-term key is compromised. Waiting
until the fraud is being detected may be unacceptable to the clients whose credit-
card information falls into the wrong hands. Moreover, Li et al. [5] argued that
the encryption may be computationally expensive when there are many users
and restrictions.

2.2 Li et al.’s Approach

Li et al. proposed a technique to generate DCNs based on one-way hash function
for smartcard-based environment [5]. Initially, a smartcard-based credit card is
issued to a client. The information stored in the credit card is composed of the
semi-secret, 16-digit credit-card number CCN , the long-term key S, and initial
session DCN, Tinit. CCN also appears on the card. These secrets are known
only to the client and the issuer.

In the first transaction, the client sends Tinit to the issuer for payment autho-
rization. In next transactions, the client generates new DCNs Tnew as follows:

Tnew = h(Tcur||S)

where Tcur stands for the previously used DCN. The client then sends Tnew to the
issuer. On receiving Tnew, the issuer calculates Tnew and compares with the one
received from the client. It can be seen that the security of the system is based on
the length of S and T and the security of hash function. Although it is assumed
that the hash function is irreversible, the use of the long-term key S offers the
opportunity for an attacker to attempt to compute S from eavesdropping DCNs.
Moreover, successful guessing S will compromise the security of the system.

2.3 Kungpisdan et al.’s Approach

Kungpisdan et al. proposed a session key generation technique as a part of KSL,
their mobile credit-card payment protocol. In this paper, we discuss briefly about
KSL protocol and focus our consideration on the key generation technique.
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There are mainly four parties involved in KSL protocol: a client C, a mer-
chant M, an issuer I (the client’s bank who issues a credit card to the client), and
an acquirer A (the merchant’s bank). A payment gateway PG acts as a medium
between the client/merchant over the Internet side and the issuer/acquirer over
banking private network side.

Initially, the client and the issuer share a long-term secret CCI. Also, they
share another secret Y . Y needs to be updated periodically or upon requests.
The main concept of this technique is to apply a hash function with one-bit
cyclic shift (either left shift or right shift) of a master secret Y and CCI each
time a session key is generated.

Yi = h(i-bit-shift-of-(CCI, Y )), where i = 1, . . . , n

Besides the secret Y , another secret X is shared between the client and the
merchant. As the client and the merchant do not share any long-term secret, the
session key generation for X can be done as follows:

Xi = h(i-bit-shift-of-X), where i = 1, . . . , n

After the sets of Xi and Yi are successfully generated, the client can perform a
payment transaction by the following protocol:

Step 1 C→M: InitialRequest
M→C: {InitialResponse}Xi

Step 2 C→M: {OI, MAC[(Price, OI), Yi]}Xi , MAC[OI, Xi+1]
Step 3 M→PG: {{MAC[(Price, OI), Yi], P rice}KPG , h(OI)}K−1

M

Step 4 Under private network,
4.1) PG→I: MAC[(Price, OI), Yi], h(OI), P rice, IDM

4.2) PG→A: Price, IDM

4.3) I,A→PG: Y es/No, {h(OI), Y es/No}Yi

Step 5 PG→M: {{h(OI), Y es/No}Yi , {h(OI), Y es/No}KM}K−1
PG

Step 6 M→C: {{h(OI), Y es/No}Yi}Xi+1

where OI stands for order information, Price stands for the price of requested
goods or services, IDM stands for the merchant’s ID, and Y es/No stands for
approval result Approved/Rejected. In this paper, we do not present each protocol
step in details, but focus only on how the above techniques are applied to the
protocol. The details of KSL protocol can be found in [2].

From the above protocol, Yi is used for two purposes: one as the key for
Message Authentication Code (MAC) and the others as the key for encryption.
The MAC containing Yi and Price is transferred from the client in Step 2 to the
issuer in Step 4.1. On receiving the message, the issuer verifies Yi and transfers
Price to the merchant. Then, Yi is used as the key to encrypt payment response
transferred from the issuer in Step 4.3 to the client in Step 6.

It can be seen that it is difficult to retrieve CCI. Due to the property of
one-way hash function, it is computationally infeasible to run reverse operation
to retrieve {CCI, Y } from Yi. Also, applying bit shifting to {CCI, Y } provides
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diffusion to Yi. In addition, in [2], as Yi can be used for both encryption and
MAC, if the deployed MAC algorithm requires the key with shorter length than
one for encryption, the length of the key for keyed-hash function has to be
shortened. Thus, it results in more difficult to extract pre-image of Yi from the
intercepted message.

However, as well as Rubin et al.’s and Li et al.’s schemes, if it happens that
CCI is disclosed to an attacker, the security of the system will be compromised
because generating each session key Yi is based on the long-term key CCI.

3 The Proposed Technique

In the previous section, the security of symmetric-key based systems relies heav-
ily on the privacy of long-term shared keys. If the keys are revealed to an attacker,
the security of the entire system will be compromised. In this section, we present
a limited-use key generation technique that the key used in each session does
not rely on any long-term key so that the compromise of the long-term key does
not affect the security of the system. Later on, we call the long-term key shared
between two parties as “master key” and the key used in each session as “session
key”.

Consider a situation where two parties, Alice and Bob, communicate to each
other using a shared key KAB. This secret can be either used as an encrypting
key, a key for keyed-hash function, or a credential, e.g. {X}KAB , h(X, KAB), or
KAB, where X is a message and KAB is a key shared between Alice and Bob,
respectively. As the credential, KAB needs to be protected by applying crypto-
graphic operations to it. Practically, KAB should be used only for short period of
time before being updated. Assume that the updated key is securely distributed
between parties, what we concern is that it would enhance performance of the
system if the frequency of key update process can be reduced.

As discussed in section 2, generating the set of session keys from a master
key shared between parties is a possible solution. However, the key generation
technique must be secure in that it must be difficult for an attacker to compute
the master key from capturing the session keys. To illustrate our technique, we
assume that Alice and Bob wants to communicate securely. The following initial
settings have been made:

3.1 Initial Settings

1. Alice and Bob share the master key KAB. KAB can be assumed to be never
expired.

2. The “distributed key” DK is another shared key between Alice and Bob that
needs to be updated periodically or upon their request. It is distributed by
performing an authenticated key-exchange protocol between Alice and Bob.

3. Alice’s and Bob’s computing devices are not necessary to be secure against
attacks. If required, they can be implemented using tamper-proof resistant
devices such as smartcard. Moreover, they are capable of performing at least
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hash operations. Referred to the analysis by Krawczyk in [4], to guarantee
sufficient security, HMAC-supported devices are preferred.

4. h(M, K) stands for the keyed-hash function of the message M and the key
K. However, to guarantee higher security, HMAC is preferred.

3.2 Session Key Generation

The following steps show the details of the proposed technique.

1. Alice generates the key DK and distributes to Bob through a secure channel.
2. Alice and Bob generate a set of “preference keys” Ki, where i = 1, . . . , m,

based on KAB as follows:

K1 = h(DK, KAB), K2 = h(DK, K1), . . . , Km = h(DK, Km−1)

Later on, we name the kind of process as KA ∗KB, which denotes the gen-
eration of a set of keys from the output of h(KA, KB) as described above.
After generating Ki, the master key KAB can be removed from the system.
The set of Ki is not used in any transaction, but later used as a seed for
generating session keys.

3. Alice generates a random number r and sends it to Bob.

Alice→ Bob: r

Alice selects two preference keys; one is KMid1 , where KMid1 is the middle
key among {K1, . . . , Kw}, w = r mod m. The others is KMid2 , where KMid2

is the middle key among {K1, . . . , KMid1}. Then, she calculates “session
initialization key” SIK, where

SIK = h(KMid1 , KMid2)

Note that, in general, KMid1 and KMid2 do not have to be the middle keys
among the set of {K1, . . . , Km}. It can be selected from some other method
which depends on the agreement between Alice and Bob. Moreover, after
generating SIK, KMid1 and KMid2 are then removed from the system. On
receiving r, Bob can also generate SIK.

4. Alice and Bob generate a set of session keys SKj, where j = 1, . . . , n.

SK1 = h(SIK, DK), SK2 = h(SIK, SK1), . . . , SKn = h(SIK, SKn−1)

Fig. 1 depicts the proposed session key generation technique. After the set of
SKj has been generated, Alice and Bob can make use of them in several ways.
Firstly, Alice can send SKj as a credential to authenticate herself or authorize
some actions to Bob over a secure channel, e.g. SSL channel or the encryption
with Bob’s public key. Secondly, SKj can be used as an encrypting key in that
Alice encrypts a message with SKj and sends it to Bob. Alternatively, SKj can
be used as a key for keyed-hash function. On receiving the message, Bob can
verify the message by using the set of SKj generated by himself and compare
whether or not the received SKj matches the one he has. If they are matched,
it means that Alice has sent the valid SKj to Bob. The applications of the
proposed technique to internet applications will be presented in section 4.
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Fig. 1. Session key generation.

3.3 Session Key Update

After being used for transactions for specified period, the set of SKi needs to be
updated. The session key update can be performed as follows:

1. Suppose that, both Alice and Bob have used SKj up to SKp, where 1 ≤
p ≤ n. Either Alice or Bob selects two preference keys; one is K ′

Mid1
, where

K ′
Mid1

is the middle key among {K1, . . . , Kq}, q = p mod rm, rm is the
number of remaining members in the set of Ki. The others is K ′

Mid2
, where

K ′
Mid2

is the middle key among {K1, . . . , K
′
Mid1

}. Then, they generate a new
session initialization key SIK ′ as follows:

SIK ′ = h(K ′
Mid1

, K ′
Mid2

)

After generating SIK ′, K ′
Mid1

and K ′
Mid2

are removed from the system.
2. Alice and Bob generate a new set of session keys SK ′

j, where j = 1, . . . , n.

SK ′
1 = h(SIK ′, DK), SK ′

2 = h(SIK ′, SK ′
1), . . . , SK ′

n = h(SIK ′, SK ′
n−1)

Note that the distributed key DK does not need to be updated every time
a new set of session keys SKj is generated. Updating DK also results in
updating the set of Ki. Alice and Bob can repeatedly use DK until the set
of Ki is depleted. Fig. 2 depicts the proposed session key update technique.

3. To update a new set of distributed keys, after the new key distributed key
DK ′ has been distributed, the following process can be done. Assume that
the currently-used session key is SKu, Alice and Bob selects Kv among the
set of {K1, . . . , Krm}, where v = u mod rm. Then, they compute Kv ∗DK ′
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Fig. 2. Session key update.

to generate a new set of preference keys K ′
i, where i = 1, . . . , n. Alice and

Bob can follow the key updating process to generate a new SI key and a
new set of session keys.

It can be seen that generating each set of session keys does not rely on any
long-term key, but on randomly chosen preference keys (as a result of selecting
the p-th session as the last session before SKj is being updated).

As a result, the proposed technique not only enhances the security of the
system against key compromise, but also reduces the frequency of key update
process that increases performance of the system.

4 Applying the Proposed Technique
to Internet Payment Systems

In this section, we demonstrate the usability of the proposed technique by ap-
plying it to various kinds of internet payment systems.

4.1 KSL Protocol

In this section, we show how the proposed technique can enhance the security
of KSL protocol [2]. It can be used as an example to illustrate the practical
usefulness of our technique to symmetric-key based cryptographic protocol.

The proposed technique presented in section 3 can be applied directly to KSL
protocol due to the similar environment settings. The following illustrates how
to generate the sets of Yi and Xi, where i = 1, . . . , n.

Generating Yi. In KSL protocol, a client needs to register herself to an issuer
in order to share the distributed key Y . Applied the proposed technique, the
master key CCI is also distributed during the registration. The following steps
can be done in order to generate the set of session keys Yi.
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1. Both client and issuer generate a set of preference keys Ki, where i =
1, . . . , m, by computing Y ∗ CCI. Then they store the set of Ki on their
terminals. At this stage, CCI is removed from the system.

2. The client generates a random number r and transmits it to the merchant
in Step 1. r will then be forwarded to the issuer in Step 4.1. Step 1 and
Step 4.1 of KSL protocol are now modified as follows:

Step 1 C→M: IDC , r, s, T IDReq, MIDReq
Step 4.1 PG→I: MAC[(Price, h(OI), IDM ), Yi], h(OI), r, T ID, Price,

IDC , IDM

Note that, in Step 1, s stands for the random number generated by the
client for generating Xi (its details will be presented in the next section).
Alternatively, r can be generated by either the client or the issuer during
the registration.

3. The client and the issuer select the keys KMid1 and KMid2 and computes
SIK, where SIK = h(KMid1 , KMid2).

4. The client and issuer generate the set of session keys Yi, where i = 1, . . . , n,
by following SIK ∗ Y and use them in the transactions.

Y1 = h(SIK, Y ), Y2 = h(SIK, Y1), Y3 = h(SIK, Y2), . . . , Yn = h(SIK, Yn−1)

In KSL protocol, Yi is first used as a MAC key (representing a DCN) to au-
thenticate the client to the issuer. On receiving the message in Step 4.1, the
issuer can verify the message with the session key SKj it has. If the verification
is successful, the issuer can infer the client with valid credit-card information.
In Step 6, the client can verify that the message has been sent from the issuer
by decrypting the message with the SKj she has.

Generating Xi. The key generation for Xi presented in section 2.3 seems to
be more vulnerable than the technique for generating Yi since generating each
session key Xi relies on only the distributed key X , whereas generating Yi is
based on two keys: Y and CCI and the master key CCI is never transmitted
during transactions. Based on the proposed technique, Xi can be generated as
follows.

1. After the client and the merchant share the distributed key X , they generate
a set of preference keys {KK1, . . . , KKm} as follows.

KK1 = h(X, Xm−bit−shift), KK2 = h(X, KK1), . . . , KKm = h(X, KKm−1)

where Xm−bit−shift stands for m-bit cyclic shifting of X . The set of KKi is
stored at both client and merchant’s devices.

2. The client generates a random number s and sends it to the merchant in Step
1. Both client and merchant then select two preference keys; one is KKMid1 ,
where KKMid1 is the middle key among {KK1, . . . , KKx}, x = s mod rm,
rm is the number of remaining members in the set of KKi. The others
is KKMid2 , where KKMid2 is the middle key among {KK1, . . . , KKMid1}.
Then, they calculate SIK ′, where SIK ′ = h(KKMid1 , KKMid2).
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3. The client and the merchant generate Xi, where i = 1, . . . , n, by following
SIK ′ ∗X and use them for transactions.

X1 = h(SIK ′, X), X2 = h(SIK ′, X1), . . . , Xn = h(SIK ′, Xn−1)

Updating the sets of Yi and Xi follows the process presented in section 3.3.

4.2 Credit-Card Payment over SSL

As discussed in section 2, several techniques [7, 5] have been proposed to solve
the problems of credit-card payments over an SSL that mainly come from the
security of the SSL protocol itself and revealing the client’s credit-card number
to the merchant as it is transferred in cleartext over SSL channel. However, they
are still based on long-term shared keys that is vulnerable to attacks.

Applying our technique to credit-card payment over SSL is more straight-
forward compared to KSL protocol. This is because, after the SSL connection
between a client and a merchant is established, payment-related information is
then transferred through it. What the client needs to do is transmitting a session
key representing the client’s credit-card information through the SSL channel.

Referred to section 3, three secrets are shared between the client and the
issuer: the master key KCI , the distributed key DK, and the semi-secret credit-
card number CCN .

After the client selects goods or services from the merchant’s site, the pay-
ment screen is displayed. The client is then required to fill in her credit-card
number and password to authenticate herself to her device. When the authen-
tication is successful, the session key SKj is generated and transmitted to the
merchant together with payment information under SSL channel as follows:

C→M: {OD, Price, IDI , r, h(Price, SKj, CCN, r)}K

where K stands for the key shared between the client and the merchant generated
from SSL handshake session. Price and OD stand for the client’s requested price
and goods descriptions (including transaction ID and timestamp), respectively.
IDI stands for the issuer’s ID which normally is the first four digits of CCN .
Note that r needs to be sent only in the first transaction in the system.

On receiving the message, the merchant can retrieve only OD, IDI , and
Price. She recognizes the issuer from IDI . The merchant then forwards {Price,r,
h(Price, SKj, CCN, r)} to the issuer. The issuer verifies h(Price, SKj, CCN, r)
and then sends approval result to the merchant and the client.

It can be seen that any party including the merchant cannot retrieve the
master secret KCI or even CCN . Applying the hash function to SKj together
with Price and CCN , not only the merchant cannot retrieve the session key
SKj, but the issuer is also guaranteed that the merchant cannot modify the
requested price Price.

4.3 SET Protocol
The technique presented in section 4.2 can be exploited in SET protocol [6].
In SET, a party called payment gateway performs transactions on behalf of a
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client/merchant to an issuer/acquirer. The encrypted client’s Payment Informa-
tion (PI) including credit-card information is decrypted by the payment gateway
and later forwarded to the issuer under a banking private network. In fact, the
credit-card information should be known only to the issuer because, in practical,
the payment gateway and the issuer may be different parties.

Based on the fact that the purpose of transferring credit-card information
is to authenticate the client to the issuer, it is therefore not necessary to reveal
the credit-card information to any other party including the payment gateway
(if the payment gateway and the issuer are different parties). Applying our tech-
nique can conceal the credit-card information from the payment gateway. In SET
protocol, the original client’s PI is shown as follows:

{TID, h(OD, Price), P rice, IDM , CCI}KPG

where KPG stands for the payment gateway’s public key, TID stands for transac-
tion ID including the time and date of transaction, OD stands for order descrip-
tions, and IDM stands for the merchant’s ID. Applied the proposed technique,
PI can be modified as follows:

{TID, h(OD, Price), P rice, IDM , SKj, r}KPG

Note that r has to be transmitted only in the first transaction in the system. With
this method, the payment gateway only recognizes that the client has requested
it to authorize the issuer for this payment, but SKj is transparent to it.

4.4 Implementation Issues
In this section, we discuss major issues related to the implementation of the pro-
posed technique in credit-card payment systems. The results from the discussion
can also be applied to other kinds of internet applications.

Key Distribution: our technique focuses on the deployment of the master key
rather than the semi-secret credit-card number. Therefore, {KCI , DK, r} needs
to be distributed between the client and the issuer.

Before making the first payment, the client needs to register herself to the
issuer in order to share {KCI , DK, r}. In the case that the client is provided a
card reader, the issuer can generate {KCI, DK, r} and store them on the card
before issuing the card to the client. Therefore r and DK do not need to be
transferred in any transaction which results in fully offline key generation.

Storing and Managing Keys: the proposed technique requires two sets of
keys, Ki and SKj, to be generated at each party’s device. However, only the
entire set of preference keys Ki is stored on the devices, whereas each member in
the set of session keys SKj is generated at the beginning of each transaction in
order to reduce storage requirement. As Ki is not transmitted in any transaction,
we can guarantee its security as long as the device is not compromised.

After generating the set of Ki, the master key (CCI in KSL protocol and
KCI in SSL-based credit-card payment scheme and SET protocol) is no longer
used in the system. As well as the session key (Yi or SKj), after a new session key
has been generated, the previously used key is then removed from the system.
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5 Discussion

5.1 Security of the Proposed Technique Against Attacks

In the proposed technique, generating each session key is not based only on the
master key. Thus, the compromise of the master key in next transactions will
not compromise the security of the system. In this section, we discuss about the
security of the proposed technique against various kinds of attacks.

Consider the situation where a session key SKj is transmitted in cleartext
over an insecure channel. First of all, due to the one-way property of hash func-
tion, reverse operation of SKj to retrieve SIK is computationally infeasible.
Referred to [4], HMAC algorithm is preferred due to its proven security. One
possibility is to collect a number of session keys and try to guess the next value
of SKj . However, the fraud will be detected and limited by allowing a limited
number of attempts on specific client. If the attempts exceed the specified limit,
the client’s account is suspended. The system then notifies the client that there
were unauthorized attempts on her account and asks the client to update the
SI key. After the client updates the SI key, the attacker has to repeat all the
attacking processes from the beginning. Moreover, as stated that SKj can be
used as a key for encryption and keyed-hash function, its key length should be
128 bits which is compatible with AES and HMAC-MD5 algorithms. Therefore,
the search space to retrieve the correct SKj is 2128.

Consider the case that the above attempts have not been detected by the
system. The set of session keys SKj is valid over the short period of time. After
the session keys are updated, the keys in the attacker’s hands are no longer valid.

As the initial input for the set of SKj are SIK and DK. The attacker must
be able to record all session keys from SK1 and and then tries to compute SIK
and DK. In the case that the attempt is successful, the attacker can generate
the next session key. However, the fraud will be eventually detected because
the session key generated by the client is found as used by the issuer. At this
stage, the client does not need to update the master key. What she needs to do is
requesting the issuer to update the set of session keys. After the new set of session
keys SK ′

j becomes valid, the current SI key SIK is no longer valid because SIK ′

is based on the preference keys that are not used in any transaction, not SIK.
To retrieve SIK ′, the attacker needs to capture the transaction with SK ′

1 and
attempts to compute SIK ′.

The only possible successful attack to the proposed technique is that the
attacker must be able to do the following:

1. Capture DK distributed over the network,
2. Access to each party’s device to retrieve the entire set of preference keys Ki,
3. Record all SKj transmitted in all transactions, and
4. Detect the request to update the set of session keys so that he can know p

in order to select KMid1 and KMid2 from the set of Ki.

In the worst case, if the attacker succeeds the above process, he can generate
and use the valid SKj until being detected by the system.
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We can see that the proposed key generation technique is not based on any
long-term secret. Generating each set of session keys is based on dynamic pa-
rameters randomly chosen from the set of preference keys Ki. As a result, the
higher number the transactions have been performed, the less chance the system
is compromised. Session key compromise does not affect the system considerably.

5.2 Possible Applications to Conventional Credit-Card Payments
One of the concerns about the usage of disposable credit-card numbers that has
been pointed out in [7] is the compatibility to conventional electronic commerce
sites which accept 16-digit credit-card number. Thus, the length of each DCN
must be 128 bits and readable by the client. Alphanumeric numbers should be
the proper format. In the proposed technique, the length of each session key is
equal to the length of the key for AES encryption algorithm or for HMAC-MD5
algorithm so that the session key can be applied to cryptographic operations as
stated in section 3.2.

However, as stated in [7], if the keys need to be alphanumeric, the search space
to generate the right key is 3611 (the first 4-digit number is the card issuer’s ID
and the last digit is checksum). With the security of our technique discussed in
section 5.1, the proposed technique is still secure with this key length.

6 Conclusion

In this paper, we have pointed out the problems and limitations of the deploy-
ment of shared secret keys by focusing on credit-card information transfer in
credit-card payment systems. We then proposed an efficient technique to gen-
erate and update limited-use secret keys. We have shown that the proposed
technique is secure against key compromise. Also, the generation of each set of
session keys are based on dynamically chosen preference keys so that the system
is still secure although some keys are compromised.

We have demonstrated the usability of the proposed technique by applying
it to various kinds of credit-card payment systems: KSL protocol [2], SSL-based
payment scheme [1], and SET protocol [6]. The results have shown that the
proposed technique is advantageous not only to credit-card payment systems,
but also to other kinds of internet applications that deploys shared keys. It
enhances the security and performance of the system considerably. Moreover,
the DCNs generated from the proposed technique are possibly implemented in
conventional credit-card payment applications with higher security.

As future work, we aim to analyze performance of the system that applies
the proposed technique. Moreover, we aim to apply the proposed technique to
other kinds of internet applications, especially mobile commerce.
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Abstract. We consider software implementation of resilient Maiorana-
McFarland S-boxes. Such S-boxes have application in the design of
stream ciphers and their efficient software implementation is important
for software implementation of the corresponding stream ciphers. Most
papers on construction of resilient Maiorana-McFarland S-boxes provide
mathematical descriptions which are not sufficient for implementation
purposes. Moreover, the mathematical descriptions do not bring out
the fact that in most cases such S-boxes can be efficiently imple-
mented using a small amount of memory. Our work shows that these
S-boxes can be implemented using a small amount of memory and the
output of an S-box can be computed using a small number of operations.

Keywords: S-box, Resiliency, stream cipher, Maiorana-McFarland Con-
struction.

1 Introduction

Stream ciphers are basic cryptographic primitives and have been extensively
studied. A classical model for memoryless synchronous stream ciphers uses one
or more linear feedback shift registers (LFSRs) and combines the outputs of these
LFSRs using a Boolean function. In the nonlinear filter model, a single LFSR is
used and several sequences from this LFSR are combined using a Boolean func-
tion to obtain the desired output key sequence. The nonlinear combiner model
uses several LFSRs and uses one sequence from each LFSR. These sequences are
combined using a Boolean function to produce the output key sequence.

The above models have been extensively studied in the literature and differ-
ent attacks have been proposed on these models. These attacks have given rise
to several necessary properties of the combining (or filtering) Boolean function.
Some of these properties are high nonlinearity, high algebraic degree and high
resiliency. There has been extensive research on the design of Boolean functions
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satisfying these properties and many constructions are known. The use of suit-
able Boolean functions is considered to be mandatory for design of such stream
ciphers.

The purpose of the current paper is to consider implementation of a class of
S-boxes suitable for use in the above class of stream ciphers. An S-box produces
more than one bit as output and hence use of an S-box in the above model of
stream ciphers ensure a higher throughput. Design of suitable S-boxes have also
been studied in the literature.

In Section 3, we describe in details the various issues related to the use of
S-boxes in the nonlinear combiner model of stream ciphers. We know of no other
place, where such a detailed discussion of these issues are presented. While an
S-box promises a higher throughput, it also has the possibility of leaking more
information. Using existing results, we show that this leakage can be upper
bounded and compensated by using slightly larger length LFSRs. A recent class
of attacks on stream ciphers is the class of algebraic attacks. We consider the
resistance of nonlinear combiner model to algebraic attacks. More importantly, a
recent paper [10] considers algebraic attacks on Maiorana-McFarland functions.
We show that from an application point of view this attack need not be better
than a generic algebraic attack.

Most papers describing construction of Boolean functions and S-boxes suit-
able for use in stream ciphers are mathematical in nature. The emphasis is usu-
ally on providing precise mathematical description of the S-boxes and proving
their required properties. While this is important, there is also the requirement
to study suitable methods for implementing such S-boxes and Boolean functions.
Implementation is normally done by engineers for whom the mathematical de-
scription alone may be too terse.

In this paper, we provide detailed description of a method for implement-
ing Maiorana-McFarland resilient S-boxes. A series of papers [17, 9, 8, 12, 7] have
studied such S-boxes and up to now, the best construction of such S-boxes is
available in [7]. We consider software implementation of the class of Maiorana-
McFarland S-boxes described in [7]. We show that these S-boxes can be repre-
sented quite efficiently using a small amount of memory. Further, the output
of such an S-box can be computed using a small number of operations. These
two features make the use of Maiorana-McFarland S-boxes attractive from an
implementation point of view. As an example, we show that a 16-bit input, 4-
bit output, 2-resilient S-box can be implemented using only 488 bits. The 4-bit
output of such an S-box can be computed using at most two table look-ups, 4
inner product computations of 7-bit strings and two bit vector comparisons.

Our description of the software implementation of the S-boxes in [7] is il-
lustrated using the example mentioned above. The ideas behind this example
capture the general situation quite nicely. We also show that it is easy to gener-
alize the construction to implement a large class of S-boxes.

Related Work: The usual technique for software implementation of S-boxes is
to use the truth table representation. This is usually sufficient if the size of the
S-box (i.e., the number of input variables) is small. On the other hand, for S-
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boxes with 15 to 20 input variables, the truth table method requires a relatively
large amount of memory and becomes infeasible for resource constrained devices
like smart cards. In such a situation, one has to look for other implementation
techniques.

Implementation of Maiorana-McFarland S-boxes has been earlier considered
by Nyberg [11]. In that work, perfect nonlinear (as opposed to resilient) functions
were considered. An elegant technique using an LFSR was used to realise a
large class of perfect nonlinear S-boxes. The implementation for an (n, m) S-box
require one n

2 bit shift register and need m inner product computations and
(m− 1) shifts.

The main difference between our work and that of Nyberg [11] is that we
consider the implementation of resilient functions whereas Nyberg considers the
implementation of perfect nonlinear functions. Also the functions that we con-
sider have a more complex structure being concatenation of affine functions of
different number of variables. Thus it does not seem easy to apply Nyberg’s
technique to realise the kind of functions that we consider. On the other hand,
Nyberg’s technique scales very nicely and implementation of functions on a few
hundred variables is feasible. For the functions that we consider, practical con-
siderations will usually limit the number of variables to be less than thirty. Thus,
it is not meaningful to make a direct comparison between our work and that of
Nyberg.

We know of no other work which considers the software implementation of
large S-boxes and to the best of our knowledge, the current work provides the
first practical software implementation method for resilient Maiorana-McFarland
S-boxes. Further research in this direction can address the questions of more
efficient and/or optimal implementation methods.

2 Preliminaries

We briefly describe some relevant preliminaries on Boolean functions and S-
boxes.

2.1 Boolean Functions
Let IF2 = GF (2). We consider the domain of a Boolean function to be the vector
space (IFn

2 ,⊕) over IF2, where ⊕ is used to denote the addition operator over
both IF2 and the vector space IFn

2 .
A Boolean function g can be written as sum of monomials over IF2. If an

ordering of the monomials are fixed, then the sum-of-monomials representation
of g is unique and this representation is called the algebraic normal form (ANF)
of g. The degree of the polynomial is called the algebraic degree or simply the
degree of g. If the degree of a Boolean function g is at most one we call it an
affine function, further if the constant term in the polynomial is zero we call it
a linear function.

If we fix an enumeration of the elements of IFn
2 , then an n-variable Boolean

function can be uniquely represented by a binary string of length 2n. One stan-
dard enumeration of IFn

2 is σ(0), . . . , σ(2n − 1), where σ(i) is the n-bit binary
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representation of i. In the rest of the paper we will assume this enumeration
of IFn

2 .
A Boolean function g is said to be degenerate on the variable xi if

g(x1, · · · , xi−1, 1, xi+1, · · · , xn) = g(x1, · · · , xi−1, 0, xi+1, · · · , xn).

The function g is said to be degenerate if it is degenerate on some variable, else it
is said to be non-degenerate. A Boolean function g is said to be t-resilient if any
subfunction obtained by fixing at most t variables of g to constant is balanced.
Further details on resilient functions can be found in the papers mentioned in
the references (for example [1, 7–9, 12, 13, 17]). We do not provide such details
as they are not relevant to the present work.

2.2 S-boxes

An (n, m) S-box (or vectorial function) is a map f : {0, 1}n → {0, 1}m. Let f be
an (n, m) S-box and g be an (m, r) S-box. We define g◦f as (g◦f)(x) = g(f(x)).
An (n, m) S-box f is said to be t-resilient, if g ◦ f is t-resilient for every non-
constant (m, 1) linear function g. By an (n, m, t) S-box we mean a t-resilient
(n, m) S-box. As in the case of Boolean functions, if we fix the enumeration σ
of the set IFn

2 , then an (n, m) S-box f is uniquely defined by a 2n ×m matrix
Mf , where f(σ(i)) is given by the ith row of Mf . Given a sequence of S-boxes
f1, · · · , fk; where fi is an (ni, m) S-box we define the concatenation of f1, · · · , fk

to be the matrix

M =

⎡⎢⎢⎢⎣
Mf1

Mf2

...
Mfk

⎤⎥⎥⎥⎦ .

If 2n1 + · · ·+2nk = 2n for some n, then the matrix M uniquely defines an (n, m)
S-box f . In this case we say f is the concatenation of f1, · · · , fk.

3 Suitability of S-boxes in Nonlinear Combiner Model

In the nonlinear combiner model exactly one bit sequence is extracted from
each LFSR and all the bit sequences are combined using a Boolean function
to generate the key sequence. In the nonlinear combiner model we can use an
S-box in place of the Boolean function to increase the throughput. (Note that
the criteria of resiliency is perhaps not that important for the nonlinear filter
model and hence we do not consider this model in this paper.) Now we provide
justification as to why we can use S-boxes as multioutput combining functions.

We start by recalling the following result. Theorem 2 of [7] states: Let f be
a t-resilient S-box and g be any arbitrary Boolean function then (g ◦ f) is t-CI
(CI stands for correlation immune). Further (g ◦ f) is t-resilient if and only if g
is balanced.
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Thus correlation immunity of an (n, m, t)-resilient S-box is preserved under
composition with an arbitrary m-variable Boolean function. Hence to obtain
correlation between an arbitrary combination of the output variables and a non
trivial linear function of the input variables, we must choose at least (t+1) input
variables.

The next question is the amount of information leakage. The work of Zhang
and Chan [16] provide an upper bound on the correlation between a linear com-
bination of input variables and any arbitrary (i.e., not necessarily linear) com-
bination of the output variables. This upper bound is 2

m
2 times more than the

correlation determined by the nonlinearity of f .
Theorem 4 of [16] states: Let F be a (n, m) S-box and c(f, g) is the correlation

coefficient of f and g. Let the maximum correlation coefficient between F and
linear function lw be defined as

CF (w) = max
g∈Ωm

c(g ◦ F, lw)

where Ωm is set of all m-variable Boolean functions. The Walsh transform of
lv ◦ F at point w is defined as

WF (v, w) =
∑

x∈IFn

2

(−1)〈v,F (x)〉⊕〈w,x〉.

Then

CF (w) ≤ 2m/2

2n
max

v∈IFm

2

|WF (v, w)|. (1)

Thus, as observed in above theorem, the value of m must be small compared
to that of n. Increasing the value of m will leak extra information about the
input. On the other hand increasing the value of m increases throughput. So as
stated in [16] there is a trade-off against correlation attacks and throughput of
the keystream sequences in the design of S-boxes for stream ciphers.

In the example we describe in Section 5, we have n = 16 and m = 4. The
correlation between any nonzero linear combination of at least (t + 1) input
variables and any nonzero linear combination of output variables is at most 11

29 .
If we choose any arbitrary combination of the output variables, then from (1),
the upper bound for the correlation is 11

27 , which is not significantly more than
11
29 . There is also a related issue, which we discuss next.

The resistance of the system to correlation attacks depends not only on
maximum correlation coefficient but also on the lengths of the LFSRs. Thus
to achieve a target resistance one has to correspondingly choose the lengths
of the LFSRs. We compute the amount by which the length of LFSRs are to
be increased to get same level of security considering the increase in value of
maximum correlation coefficient. We consider this with respect to a specific
correlation attack [4]. However, the same analysis also holds for other correlation
attacks. Let N be the number of key bits required to successfully carry out the
correlation attack in [4]. From [4] we have
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N � 1
4
.(2kj! ln 2)

1
j .β−2.2

L−k
j ,

where k, j are algorithm parameters, L is effective length of LFSRs and β =
maxw∈IFn

2
CF (w) is the bias. In the attack of [4] the complexity of the precompu-

tation phase is approximately N �(j−1)/2 and requires N �(j−1)/2� memory. The
number of parity check equations that need to be stored is roughly Nj

j! .2−(L−k).

To successfully carry out the attack the values of N �(j−1)/2 and Nj

j! .2−(L−k)

should not be very large and hence the value of j is small (≤ 6).
Now consider the effect of replacing a Boolean function by an S-box. Let

β′ ≥ β be the modified bias. To keep the required number of key bits N same
for both the Boolean function and the S-box, suppose L is increased to L′. Then

β−2 × 2
L−k

j = (β′)−2 × 2
L′−k

j ,

and from this L′ = L+2j× log2
β′
β . In our example of Section 5, we have β′

β = 4.
So for same value of N we have L′ = L + 4j ≤ L + 24. Thus if we increase the
effective length of LFSR by just 24 bits, we get same level of security. In our
example t = 2 i.e., the S-box is 2-resilient. To carry out correlation attack at least
3 LFSRs have to be taken. So length of each LFSR should increase by 24

3 = 8
bits. As n = 16, total increase in length of LFSRs will be 8×16 = 128. With this
increase in length of LFSRs, the effect of increase in bias will be compensated
while the throughput will increase m = 4 times. So there is a trade-off between
increase in length of LFSRs and increase in throughput.

3.1 Algebraic Attacks

Algebraic attacks [5] are a new type of attacks on stream cipher. It recovers
the secret key by solving an overdefined system of multivariate equations. These
attacks exploit the fact that even if a function may have high degree it may have
a low degree multiple. It is shown in [5] that if f be any Boolean with n inputs
then there is a Boolean function g = 0 of degree at most �n

2 � such that f ∗g is of
degree at most �n

2 �. If the product f ∗ g is zero, we say that f has an annihilator
g of low degree.

So we can get multiple of a Boolean function which has degree at most �n
2 �.

In [10] it is shown that Maiorana-McFarland class of n-variable Boolean functions
inherently has an annihilator of degree (n − r + 1), where r is the number of
variables of affine functions which are concatenated to construct the n-variable
Boolean function. If r is very close to n then (n−r+1) is small and the attacker
gains. If r > n

2 the annihilator has degree < n
2 . On the other hand, if r ≤ �n

2 �,
the degree of annihilator of [10] is ≥ �n

2 �. In such a situation, the multiplier of
[5] is more useful, since its degree is at most �n

2 �.
In the construction in [7], generally r < n

2 and hence degree of annihilator
is > n

2 . In our example n = 16, r = 7 so n − r + 1 = 10 which is greater than
n
2 = 8. So by just considering inherent annihilator of degree (n−r+1) (as in [10])
one cannot conclude that Maiorana-McFarland constructions are more prone to
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algebraic attacks. To apply algebraic attacks on Maiorana-McFarland class of
S-boxes one has to find low degree multiple as with other classes of Boolean
functions.

Now consider a multiplier of degree d is used to carry out the algebraic
attack. Let the length of the effective LFSR be L. Then there are L secret
key bits. Suppose N bits of the keystream are available. Then one forms N
nonlinear equations in the L secret key bits. In general, it is difficult to solve
such equations. The usual technique used is to linearize the system, i.e., replace
each nonlinear term by a new variable. Then we have a system of N linear
equations in roughly the same number of variables. Solving this linear system,
one then attempts to solve the original nonlinear system. Since there are L secret
key bits and the multiplier has degree d, one has to consider

∑d
i=1

(
L
i

)
nonlinear

terms. To solve the system of linear equations, we must have the number of
equations N to be equal (or slightly more) than the number of variables. Hence
we require N to be roughly equal to

∑d
i=1

(
L
i

)
. If L = 256 and d = 8, then N is

greater than 248. Thus to apply the attack one needs to have at least 248 bits of
keystream generated from a single secret key. From a practical point of view, this
is clearly an infeasible requirement. Thus one can choose the number of LFSRs
and the effective length L in a manner which makes algebraic attacks ineffective
in practice.

4 A Description of Resilient
Maiorana-McFarland Construction

Maiorana-McFarland construction essentially consists of obtaining a nonlinear
resilient function by concatenating small affine functions and was introduced
in [1]. Later work have helped in developing and sharpening the idea. Our dis-
cussion is based on [13].

We start by providing a brief description of the construction as applied to
Boolean functions and then discuss the modifications required for applying to
S-boxes. As discussed in Section 2.1, an n-variable Boolean function may be
represented uniquely by a binary string of length 2n. Thus to describe a Boolean
function it is sufficient to describe its representation as a string of length 2n.
The construction consists of several ideas.

First Idea: Let f1, · · · , f2n−r be 2n−r affine functions, where each fi is rep-
resented by a string of length 2r and is non-degenerate on at least t + 1 vari-
ables. Consider the concatenation of the string representation of the functions
f1, · · · , f2n−r . The resulting string is of length 2n and hence represent an n-
variable Boolean function f .

Second Idea: Let g(xn, . . . , xr+1) be a nonlinear function and let h(xr , . . . , x1)
be a linear function which is non-degenerate on at least t + 1 variables. Define

f(xn, . . . , x1) = g(xn, . . . , xr+1)⊕ h(xr, . . . , x1).

Suppose we fix the values of xn, · · · , xr+1 to some constants cn, · · · , cr+1. Then
f(cn, · · · , cr+1, xr, · · · , x1) = g(cn, · · · , cr+1)⊕h(xr, · · · , x1). Since g(cn, · · · , cr+1)
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is a constant, the substring of f as xr, · · · , x1 runs over 2r possible values is equal
to either the string representation of h or the string representation of 1⊕h. Thus
the entire string f is a concatenation of h and 1⊕ h.

Generalization: Let R1 + · · ·+ Rk = 2n where Ri is a multiple of 2ri and is of
the form Ri = Mi×2ri = (2si,1 +· · ·+2si,ki )2ri = 2si,12ri +· · ·+2si,ki 2ri . Let gi,j

be a nonlinear function of si,j variable and li is a linear function of ri variables
disjoint from the previous si,j variables. Let hi,j = gi,j ⊕ li. By the second idea
hi,j is a concatenation of li or li. Consider concatenation of hi,1, · · · , hi,ki and call
it fi. Each fi may not represent a Boolean function since its string representation
may not be a power of 2. Let f be concatenation of f1, · · · , fk. This f is an n-
variable Boolean function which is ultimately a concatenation of the lis and the
(1⊕ li)s.

4.1 Maiorana-McFarland Construction for S-boxes

Our description of Maiorana-McFarland construction for S-boxes closely follows
the description given in [7]. The following result which is restatement of Lemma 7
in [8] is crucial to Maiorana-McFarland construction for S-boxes. For proof see [8]
and further details about the construction see [7].

Theorem 1. Let C be a [u, m, t + 1] code. Then it is possible to construct
(2m − 1)×m matrix D with entries from C, such that, {c1Di,1⊕ · · · ⊕ cmDi,m :
1 ≤ i ≤ 2m − 1} = C \ {(0, · · · , 0)} for each nonzero vector (c1, · · · , cm) ∈ IFm

2 .

Let D be the matrix in Theorem 1. For (1 ≤ i ≤ 2m − 1) and (1 ≤ j ≤ m)

define a u-variable linear function Li,j(x1, · · · , xu)
�
= 〈Di,j , (x1, · · · , xu)〉. Given

the code C we define a (2m − 1)×m matrix L(C) whose entries are u-variable
linear functions by defining the i, j th entry of L(C) to be Li,j(x1, · · · , xu).

For positive integers k, l with k ≤ l, we define L(C, k, l) to be the submatrix of
L(C) consisting of the rows k to l. Thus L(C, 1, 2m−1) = L(C). Let G(y1, · · · , yp)
be a (p, m) S-box whose component functions are G1, · · · , Gm. We define G ⊕
L(C, k, l) to be an (l − k + 1)×m matrix whose i, j th entry is

Gj(y1, · · · , yp)⊕ Lk+i−1,j(x1, · · · , xu)

for 1 ≤ i ≤ l−k+1 and 1 ≤ j ≤ m. If l−k+1 = 2r for some r then G⊕L(C, k, l)
defines an S-box F : {0, 1}r+p+u → {0, 1}m in the following manner.

Fj(z1, · · · , zr, y1, · · · , yp, x1, · · · , xu) = Gj(y1, · · · , yp)⊕ Lk+i−1,j(x1, · · · , xu)

where 1 ≤ j ≤ m, 1 ≤ i ≤ 2r, F1, · · · , Fm are the component functions of F and
z1 · · · zr is the binary representation of i−1. By F = G⊕L(C, k, l) we will mean
the above representation of the S-box F .

In the matrix M = G(y1, · · · , yp)⊕L(C, k, l) we say that the row Li,∗ of L(C)
is repeated 2p times. Let G(y1, · · · , yp) and H(y1, · · · , yq) be (p, m) and (q, m)
S-boxes respectively and M1 = G ⊕ L(C, k, l), M2 = H ⊕ L(C, k, l). Then we
say that the row Li,∗ of L(C), (k ≤ i ≤ l) is repeated a total of 2p + 2q times
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in the matrix [M1 M2]
T . A row of L(C) can be repeated 2r1 or 2r1 + 2r2 or

2r1 + 2r2 + 2r3 times as required.
A description of Maiorana-McFarland resilient S-box in [7] consists of the

following information.

1. The matrix L(C).
2. A list [(n1, R1), (n2, R2), · · · , (nk, Rk)] which signifies that ni rows of L(C)

are to be repeated Ri times each. For 1 ≤ i ≤ k, either ni = 2ri or ni =
2ri,1 + 2ri,2 or ni = 2ri,1 + 2ri,2 + 2ri,3 .

3. For 1 ≤ i ≤ k if ni = 2ri , then Gi is a nonlinear (ri, m) S-box otherwise Gi,j

is a nonlinear (ri,j , m) S-box where 2 ≤ j ≤ 3.

The method described in [7] consists of around 15–20 different cases depending
on the values of the parameters n, m and t. The cases are chosen to maximise
the nonlinearity. Each case consists of a description of the above form. Hence
the actual implementation method for any specific function can be described
by a general method. In the next section, we illustrate this general method by
considering a specific example, which is sufficiently general enough to cover all
the cases mentioned in [7].

5 A Concrete Example

In this section we provide description of the construction of a (16, 4, 2) S-box.
The purpose of this example is to illustrate the methodology behind the general
description provided later.

5.1 Construction of L(C)

We use [7, 4, 3] linear Hamming code C. Let c0 = 1101000, c1 = 1010100, c2 =
0110010, c3 = 1110001 be a basis of C. Let β be a root of primitive polynomial
x4 + x + 1 and (1, β, β2, β3) be a polynomial basis of GF (24). Any element γ of
GF (24) can be written as γ = γ0+γ1β+γ2β

2+γ3β
3 where γ0, γ1, γ2, γ3 ∈ {0, 1}.

We define a bijection φ : GF (24) �→ C by (see Lemma 7 in [8])

φ(a0 + a1β + a2β
2 + a3β

3) = a0c0 ⊕ a1c1 ⊕ a2c2 ⊕ a3c3.

Then
φ(1) = 1101000, φ(β) = 1010100, φ(β2) = 0110010,
φ(β3) = 1110001, φ(β4) = 0111100, φ(β5) = 1100110,
φ(β6) = 1000011, φ(β7) = 1001101, φ(β8) = 1011010,
φ(β9) = 0100101, φ(β10) = 0001110, φ(β11) = 0010111,
φ(β12) = 1111111, φ(β13) = 0101011, φ(β14) = 0011001.

We have constructed the 15 × 4 matrix D as given below (see Theorem 1 and
Lemma 7 in [8]).

D =

⎡⎢⎢⎢⎣
φ(1) φ(β) φ(β2) φ(β3)
φ(β) φ(β2) φ(β3) φ(β4)

...
...

...
...

φ(β14) φ(1) φ(β) φ(β2)

⎤⎥⎥⎥⎦ .
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As defined after Theorem 1 we have the following 15 × 4 matrix L(C) whose
entries are 7 variable linear functions.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 ⊕ x2 ⊕ x4 x1 ⊕ x3 ⊕ x5 x2 ⊕ x3 ⊕ x6 x1 ⊕ x2 ⊕ x3 ⊕ x7

x1 ⊕ x3 ⊕ x5 x2 ⊕ x3 ⊕ x6 x1 ⊕ x2 ⊕ x3 ⊕ x7 x2 ⊕ x3 ⊕ x4 ⊕ x5

x2 ⊕ x3 ⊕ x6 x1 ⊕ x2 ⊕ x3 ⊕ x7 x2 ⊕ x3 ⊕ x4 ⊕ x5 x1 ⊕ x2 ⊕ x5 ⊕ x6

x1 ⊕ x2 ⊕ x3 ⊕ x7 x2 ⊕ x3 ⊕ x4 ⊕ x5 x1 ⊕ x2 ⊕ x5 ⊕ x6 x1 ⊕ x6 ⊕ x7

x2 ⊕ x3 ⊕ x4 ⊕ x5 x1 ⊕ x2 ⊕ x5 ⊕ x6 x1 ⊕ x6 ⊕ x7 x1 ⊕ x4 ⊕ x5 ⊕ x7

x1 ⊕ x2 ⊕ x5 ⊕ x6 x1 ⊕ x6 ⊕ x7 x1 ⊕ x4 ⊕ x5 ⊕ x7 x1 ⊕ x3 ⊕ x4 ⊕ x6

x1 ⊕ x6 ⊕ x7 x1 ⊕ x4 ⊕ x5 ⊕ x7 x1 ⊕ x3 ⊕ x4 ⊕ x6 x2 ⊕ x5 ⊕ x7

x1 ⊕ x4 ⊕ x5 ⊕ x7 x1 ⊕ x3 ⊕ x4 ⊕ x6 x2 ⊕ x5 ⊕ x7 x4 ⊕ x5 ⊕ x6

x1 ⊕ x3 ⊕ x4 ⊕ x6 x2 ⊕ x5 ⊕ x7 x4 ⊕ x5 ⊕ x6 x3 ⊕ x5 ⊕ x6 ⊕ x7

x2 ⊕ x5 ⊕ x7 x4 ⊕ x5 ⊕ x6 x3 ⊕ x5 ⊕ x6 ⊕ x7 x1 ⊕ x2 ⊕ x3 ⊕ x4⊕
x5 ⊕ x6 ⊕ x7

x4 ⊕ x5 ⊕ x6 x3 ⊕ x5 ⊕ x6 ⊕ x7 x1 ⊕ x2 ⊕ x3 ⊕ x4⊕ x2 ⊕ x4 ⊕ x6 ⊕ x7

x5 ⊕ x6 ⊕ x7

x3 ⊕ x5 ⊕ x6 ⊕ x7 x1 ⊕ x2 ⊕ x3 ⊕ x4⊕ x2 ⊕ x4 ⊕ x6 ⊕ x7 x3 ⊕ x4 ⊕ x7

x5 ⊕ x6 ⊕ x7

x1 ⊕ x2 ⊕ x3 ⊕ x4⊕ x2 ⊕ x4 ⊕ x6 ⊕ x7 x3 ⊕ x4 ⊕ x7 x1 ⊕ x2 ⊕ x4

x5 ⊕ x6 ⊕ x7

x2 ⊕ x4 ⊕ x6 ⊕ x7 x3 ⊕ x4 ⊕ x7 x1 ⊕ x2 ⊕ x4 x1 ⊕ x3 ⊕ x5

x3 ⊕ x4 ⊕ x7 x1 ⊕ x2 ⊕ x4 x1 ⊕ x3 ⊕ x5 x2 ⊕ x3 ⊕ x6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

5.2 Construction of (16, 4, 2) Resilient S-box

Following [7] the description of a (16, 4, 2)-resilient S-box with nonlinearity 215−
11× 26 is as follows (see Case: 3(d)(ii) first item of Part-A and Part B in [7].

1. Matrix L(C) as constructed above.
2. The list [(2, 2m+1 + 21 + 20), (2m − 3, 2m+1 + 21)] = [(2, 25 + 21 + 20), (24 −

3, 25 + 21)] = [(2, 35), (13, 34)]. This implies that 13 rows (along with their
complements) of L(C) are to be repeated 34 times each and 2 rows (along
with their complements) are to be repeated 35 times each.

3. A nonlinear (5, 4) and an (1, 4) S-Box G1 and G2 respectively as described
below.

We construct a maximally nonlinear (5, 4) S-box G1. For this we define a bijection
on GF (25) by x �→ x3 (see [6]). We represent this bijection as a map from {0, 1}5
to {0, 1}4 by representing GF (25) using the primitive polynomial x5 + x + 1.
The S-box G1 is obtained by dropping one bit of the output of this bijection.
Let G1,1, G1,2, G1,3, G1,4 be the four component functions of G1. Each G1,j is a
5-variable Boolean function as given below.

G1,1(y1, · · · , y5) = y4 ⊕ y1y3 ⊕ y1y5 ⊕ y2y3 ⊕ y2y4 ⊕ y2y5 ⊕ y3y4 ⊕ y3y5 ⊕ y4y5

G1,2(y1, · · · , y5) = y2 ⊕ y3 ⊕ y4 ⊕ y5 ⊕ y1y5 ⊕ y3y4 ⊕ y3y5

G1,3(y1, · · · , y5) = y5 ⊕ y1y2 ⊕ y1y3 ⊕ y2y3 ⊕ y1y5 ⊕ y3y5 ⊕ y4y5

G1,4(y1, · · · , y5) = y3 ⊕ y4 ⊕ y5 ⊕ y1y2 ⊕ y1y4 ⊕ y4y5
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The output of G1 is given by a 4-bit string which can be represented as a
hexadecimal digit. We can write G1 as a 32-tuple of hexadecimal digits having
the following form:

G1 = (0, 0, 4, 7, 5, F, B, 2, D, C, 1, 3, 8, F, 2, A, 7, 9, B, 6, C, 8, A, D, 1, E, 5, 9, 6, 3, 8, D)

This representation of G1 is useful for a table look-up implementation.
The (1, 4) S-box G2 is taken to be the constant function G2(y5) = (0, 0, 0, 0).

Thus the four component functions G2,j(y5) (1 ≤ j ≤ 4) are single variable
constant functions. We now define

F1(y1, . . . , y5, x1, . . . , x7) = G1(y1, . . . , y5)⊕ L(C)
F2(y5, x1, . . . , x7) = G2(y5)⊕ L(C)

F3(x1, . . . , x7) = L(C, 1, 2)

Thus F1(y1, . . . , y5, x1, . . . , x7) is of the form [G1,1⊕c1, G1,2⊕c2, G1,3⊕c3, G1,4⊕
c4], where c1, c2, c3, c4 are the four column vectors of L(C). Further, G1,j⊕cj =
[G1,j ⊕ c1,j , . . . , G1,j ⊕ c15,j]T where ci,j is the (i, j)th entry of L(C). We have
F2(y5, x1, . . . , x7) = L(C), where each entry of L(C) is treated as degenerate
function of y5. Lastly F3(x1, . . . , x7) is defined as[

x1 ⊕ x2 ⊕ x4 x1 ⊕ x3 ⊕ x5 x2 ⊕ x3 ⊕ x6 x1 ⊕ x2 ⊕ x3 ⊕ x7

x1 ⊕ x3 ⊕ x5 x2 ⊕ x3 ⊕ x6 x1 ⊕ x2 ⊕ x3 ⊕ x7 x2 ⊕ x3 ⊕ x4 ⊕ x5

]
.

Remarks:

1. Each entry in the 15× 4 matrix F1 is a 12-variable Boolean function. This
accounts for 32 repetitions of each of the 15 rows of L(C).

2. Each entry in the 15× 4 matrix F2 is an 8-variable Boolean function. This
accounts for 2 repetitions of each of the 15 rows of L(C).

3. Each entry in the 2 × 4 matrix F3 is a 7-variable Boolean function. This
accounts for 1 repetition of each of the first two rows of L(C).

Thus the first two rows of L(C) are repeated 35 times and the next 13 rows of
L(C) are repeated 34 times. The desired (16, 4, 2) S-box F is the concatenation
of F1, F2 and F3 as we explain below. We use the notation Fk,i,j to denote the
(i, j)th entry of matrix Fk and Fk,i to be the ith row of matrix Fk. For a binary
string a1, . . . , ak, we define δ(a1, · · · , ak) = a12k + a22k−1 + · · ·+ ak−12+ ak +1.
We write x = (x1, . . . , x7), y = (y1, . . . , y5) and z = (z1, . . . , z4).

F (z, y, x) = F1,δ(z1,z2,z3,z4)(y, x) if z �= (1111)
= F2,δ(y1,y2,y3,y4)(y5, x) if z = (1111) and (y1, y2, y3, y4) �= (1111)
= F3,y5(x) if z = (y1, y2, y3, y4) = (1111)

}
(2)

The above defined F is our (16, 4, 2) S-box. Next we explain how to implement
the above (16, 4, 2) S-box efficiently and to compute the 4-bit output when 16-bit
input is given.
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5.3 Implementation

For implementing the S-box we need to store the following.

1. A 15× 4 table D whose each entry is a 7-bit binary vector. Thus each entry
of D represents a 7-variable linear function.

2. An array G of length 32 whose each entry is a 4-bit vector.

Thus the number of bits of storage required is 15× 4× 7 + 32× 4 = 488 bits.

Remark: Note that the number of bits required to store the representation is
only 488 bits which is much less than directly storing F as a look-up table of
size 4 × 216 = 218 bits. On the other hand, implementation by the truth-table
method will require one table look-up to compute the output corresponding to
an input. For our implementation, we have to use a small number of operations
as described in Section 5.4.

5.4 Computing the Output

The question now is the following: Given the representation of F as defined
by (2) in Section 5.3, how to compute the 4-bit output when a 16-bit input is
given? Here we provide the answer to this question.
Let the input be (z1, z2, z3, z4, y1, y2, y3, y4, y5, x1, x2, x3, x4, x5, x6, x7). We will
denote the kth row of D by Dk and the kth entry of G by Gk. Note that Dk is
a 4-tuple of 7-bit strings and Gk is a 4-bit string. By Dk,j (1 ≤ j ≤ 4) we will
denote the (k, j)th entry of D. In the following, the notation 〈x, y〉 denotes the
inner product of x and y.

1. If (z1, z2, z3, z4) = (y1, y2, y3, y4) = (1111) then the output is the 4-bit vector
given by

(〈Dy5,1, x〉, 〈Dy5,2, x〉, 〈Dy5,3, x〉, 〈Dy5,4, x〉)
The cost is one table lookup for D, 4 inner product computations and one
comparison to check z1z2z3z4y1y2y3y4 = 11111111.

2. If (z1, z2, z3, z4) = 1111 and (y1, y2, y3, y4) = (1111) then we compute k =
δ(y1, y2, y3, y4) and the output is the 4-bit vector given by

(〈Dk,1, x〉, 〈Dk,2, x〉, 〈Dk,3, x〉, 〈Dk,4, x〉).

The cost is one table lookup for D, 4 inner product computations and two
comparisons to verify if (z1, z2, z3, z4) = 1111 and (y1, y2, y3, y4) = (1111).

3. If (z1, z2, z3, z4) = (1111) then we compute k = δ(z1, z2, z3, z4),
l = δ(y1, y2, y3, y4, y5) and the output is the 4-bit vector given by

Gl ⊕ (〈Dk,1, x〉, 〈Dk,2, x〉, 〈Dk,3, x〉, 〈Dk,4, x〉).

The cost is one table lookup each for D and G, 4 inner product computa-
tions, one XOR of 4-bit strings and one comparison to check (z1, z2, z3, z4) =
(1111).
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The maximum cost occurs in the last case, which is 2 table look-ups, 4 inner
product computations, one XOR and one bit string comparison. Alternatively,
if F is stored directly as a look-up table of 4× 216 bits then the cost is one table
look-up. However, this table look-up is into a large table (of size 4 × 216 bits)
whereas the two table look-ups into D and G are into much smaller sized tables.

Remarks: In this example we use a linear code, so we just need to encode 4 basis
vectors along with a small memory of 4×16 bits to describe the bijection. Also D
has shift symmetry which means a further reduction in bit storage by 4. But for
general construction this reduction may not work. We are not claiming minimum
storage. In some other technique storage may be less but then computation time
will be higher.

6 General Methodology

The example in Section 5 illustrates the method for software implementation
of the resilient S-boxes described in [7]. The basic points behind the example
generalize quite easily. In this section, we briefly describe this generalization.

As mentioned in Section 4.1, a description of an S-box constructed using the
method of [7] consists of the matrix L(C), the list of pairs indicating repetition
pattern of linear functions and the required nonlinear S-boxes Gi’s and/or Gi,j ’s.

The matrix L(C) is stored as a ((2m − 1) ×m) matrix D whose each entry
is a u-bit vector. Thus storing L(C) requires u × m × (2m − 1) bits. Each Gi

is an (ri, m) S-box and each Gi,j is an (ri,j , m) S-box. Storing these as look-up
tables require m×2ri and m×2ri,j bits respectively. Nothing else requires to be
stored. Since the ri’s and the ri,j ’s are much smaller compared to n, the total
amount of storage space required will be much smaller than m× 2n bits.

The constructed S-box F can be expressed as in (2). The strategy for evalu-
ating the output of F depends on the nature of this expression. Moreover, it is
clear that such a strategy can be formulated as described in Section 5.4. The cost
of evaluating the output will be m inner product computation of u-bit strings;
one table look-up into matrix D; a few table look-ups into the Gi’s and the Gi,j ’s
and some bit vector comparisons to determine the case which is applicable for
the given input vector. Given a particular S-box, the actual strategy is easy to
design as discussed in Section 5.4.

Maiorana-McFarland construction consists of concatenation of linear/affine
S-boxes. The order of concatenation does not affect the construction. Thus
in general one can consider any permutation of the functions to be concate-
nated. We will permute the rows of the matrix D to achieve this task. The
method of changing the order of concatenation is simple. We will take an ar-
ray A[1, . . . , 2m−1] of length 2m−1. In the array A, the desired permutation of
{1, . . . , 2m−1} is stored. Considering the matrix D as described in Section 5.4 we
will take DA[i],j instead of Di,j in computing the output. Thus we see that with
this simple data structure using an array A of length 2m−1 we can get (2m−1)!
different S-boxes.
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7 Conclusion

In this paper, we have described a method for software implementation of re-
silient Maiorana-McFarland S-boxes. The main features of our implementation
are small amount of memory and fast evaluation of the output. These features
show that Maiorana-McFarland S-boxes are suitable candidates for use in soft-
ware implementation of nonlinear combiner model of stream ciphers.

Acknowledgement

We would like to thank the reviewers for detailed comments which helped to
improve the presentation of the paper.

References

1. P. Camion, C. Carlet, P. Charpin and N. Sendrier . On correlation immune func-
tions. In Advances in Cryptology - CRYPT0 1991, pages 86–100, Lecture Notes in
Computer Science, Springer-Verlag, 1992.

2. A. Canteaut and M. Videau. Degree of composition of highly nonlinear functions
and applications to higher order differential cryptanalysis. Advances in Cryptology
– Eurocrypt 2002, LNCS 2332, pages 518–533.

3. S. Chee, S. Lee, D. Lee and S. H. Sung . On the correlation immune functions and
their nonlinearity. In Advances in Cryptology - Asiacrypt 1996, pages 232–243,
Lecture Notes in Computer Science, Springer-Verlag, 1996.

4. V. Chepyzhov, T. Johansson and B. Smeets. A simple algorithm for fast correlation
attacks on stream ciphers. In Fast Software Encryption – FSE 2000, pp 181 –195,
Lecture Notes in Computer Science, Springer-Verlag, 2000.

5. N. Courtois and W. Meier. Algebraic Attacks on Stream Ciphers with Linear
Feedback, In Advances in Cryptology - EUROCRYPT 2003, 345-359. Extended
version, available at http://www.cryptosystem.net/stream/.

6. Hans Dobbertin, Almost Perfect Nonlinear Power Functions on GF (2n): The Welch
Case. IEEE Transactions on Information Theory, Vol 45, No 4, pp. 1271-1275,
1999.

7. K. C. Gupta and P. Sarkar. Improved Construction of Nonlinear S-Boxes. In
Advances in Cryptology - Asiacrypt 2002, pp 466–483, Lecture Notes in Computer
Science, Springer-Verlag, 2002.

8. T. Johansson and E. Pasalic. A construction of resilient functions with high non-
linearity. International Symposium on Information Theory, 2000.

9. K. Kurosawa, T. Satoh and K. Yamamoto. Highly nonlinear t-resilient functions.
Journal of Universal Computer Science, vol.3, no. 6, pp. 721-729, Springer Pub-
lishing Company, 1997.

10. W. Meier, E. Pasalic and C. Carlet. Algebraic attacks and decomposition of
Boolean Functions. To be published In Advances in Cryptology – EUROCRYPT’04.

11. K. Nyberg. Perfect Nonlinear S-boxes. In Advances in Cryptology – EUROCRYPT
1991, pages 378–386, Lecture Notes in Computer Science, Springer-Verlag, 1991.

12. E. Pasalic and S. Maitra. Linear Codes in Generalized Construction of Resilient
Functions with Very High Nonlinearity. IEEE Transactions on Information Theory,
Vol 48, No 8, pp. 2182-2191, August 2002.



Resilient Maiorana-McFarland S-boxes 331

13. P. Sarkar and S. Maitra. Construction of Nonlinear Boolean Functions with Impor-
tant Cryptographic Properties. In Advances in Cryptology - EUROCRYPT 2000,
pages 485–506, Lecture Notes in Computer Science, Springer-Verlag, 2000.

14. J. Seberry, X.-M. Zhang and Y. Zheng . On construction and nonlinearity of
correlation immune Boolean functions. In Advances in Cryptology - EUROCRYPT
1993, pages 181–199, Lecture Notes in Computer Science, Springer-Verlag, 1994.

15. M. Zhang. Maximum Correlation Analysis of Nonlinear Combining Functions in
Stream Ciphers. Journal of Cryptology, 13(3): 301–314, 2000.

16. M. Zhang and A. H. Chan. Maximum Correlation Analysis of Nonlinear S-boxes
in Stream Ciphers. In Advances in Cryptology – CRYPTO 2000, Lecture Notes in
Computer Science, pages 501–514. Springer-Verlag, 2000.

17. X.-M. Zhang and Y. Zheng, On Cryptographically Resilient Functions. IEEE
Transactions on Information Theory, Vol 43 , No 5, pp. 1740-1747 , 1997.



Signed Digit Representation
with NAF and Balanced Ternary Form

and Efficient Exponentiation in GF (qn)
Using a Gaussian Normal Basis of Type II

Soonhak Kwon

Inst. of Basic Science and Dept. of Mathematics, Sungkyunkwan University,
Suwon 440-746, Korea

shkwon@skku.edu

Abstract. We present an efficient exponentiation algorithm for a finite
field GF (qn) with small characteristic determined by a Gaussian normal
basis of type II using signed digit representation of the exponents. Our
signed digit representation uses a nonadjacent form (NAF) for GF (2n)
and the balanced ternary number system for GF (3n). It is generally be-
lieved that a signed digit representation is hard to use when a normal
basis is given because the inversion of a normal element requires quite
a computational delay. On the other hand, the method of a signed digit
representation is easily applicable to the fields with polynomial bases.
However our result shows that a special normal basis called a Gaussian
normal basis of type II or an optimal normal basis (ONB) of type II has
a nice property which admits an effective exponentiation using signed
digit representations of the exponents.

Keywords: finite field, Gaussian normal basis, optimal normal basis,
exponentiation, signed digit representation, NAF (nonadjacent form),
balanced ternary number system.

1 Introduction

Arithmetic of finite fields finds various applications in many cryptographic areas
these days. Especially, fast exponentiation is very important in such applications
as Diffie-Hellman key exchange and pseudo random bit generators. Though ex-
ponentiation is the most time consuming and complex arithmetic operation, in
some situations such as Diffie-Hellman key exchange, one can devise an efficient
exponentiation algorithm since a fixed (primitive) element is raised to many dif-
ferent powers. Let GF (qn) be a finite field with qn element where q is a prime
and let g ∈ GF (qn) be a primitive element (or an element of high multiplica-
tive order). Roughly speaking, the computation of gs for arbitrary values of s
is studied from two different directions. One is the use of precomputation with
vector addition chains such as BGMW method [1] and its improvements by Lim
and Lee [2] and also by Rooij [3].
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The other approach is suggested by Gao et al. [4,5,6] and it uses a special
primitive element called a Gauss period of type k, which generates a normal
basis for GF (qn). The BGMW method and its improvements are applicable to
arbitrary finite field GF (qn) and are very flexible. On the other hand, an ideal
version of BGMW method requires a memory of order O(n log q/ log(n log q))
values in GF (qn) and multiplications of order O(log(n log q)) which amounts to
an order of O(n2 log2 q log(n log q)) bit additions. An algorithm proposed by Gao
et al. is not applicable to all finite fields. However, it does not need a precompu-
tation and the complexity of the algorithm is O(kqn2) additions. Therefore if q
is small and if there is a Gauss period of high order of type k for small value of
k ≥ 2, then the method of Gao et al. outperforms the precomputation methods.

In this paper, we propose a new exponentiation algorithm in GF (qn) with
a Gaussian normal basis of type II using a signed digit representation of the
exponents. Our signed digit representation uses a nonadjacent form (NAF) when
q = 2 and a balanced ternary form when q = 3. It is shown that our new
exponentiation algorithm is approximately 33 percent faster than the existing
algorithm using a Gaussian normal basis of type II. Also we show that our
method of using a normal basis is significantly faster than the method of using a
polynomial basis, since the Frobenius map is free in our basis while a considerable
amount of GF (q)-additions is required for the Frobenius map with a polynomial
basis. We give an explicit comparison of our method with the method using a
trinomial basis with signed digit representation and show that our algorithm is
at least 33 percent faster than the trinomial basis method.

2 Gaussian Normal Basis of Type k in GF (qn)

We will briefly review the theory of Gauss periods and the exponentiation algo-
rithm of Gao et al. [5]. Let n, k be positive integers such that p = nk + 1 is a
prime different from q. Let K = 〈τ〉 be a unique subgroup of order k in GF (p)×.
Let β be a primitive pth root of unity in GF (qnk). The following element

α =
k−1∑
j=0

βτ j

(1)

is called a Gauss period of type (n, k) over GF (q). Let ordpq be the order of q
(mod p) and assume gcd(nk/ordpq, n) = 1. Then it is well known that α is a
normal element in GF (qn). That is, {α, αq, αq2

, · · · , αqn−1} is a basis for GF (qn)
over GF (q). It is called a Gaussian normal basis of type (n, k) over GF (q) or of
type k in GF (qn).

Since K = 〈τ〉 is a subgroup of order k in GF (p)×, a cyclic group of order nk,
the quotient group GF (p)×/K is also a cyclic group of order n and the generator
of the group is qK. Therefore we have a coset decomposition of GF (p)× as a
disjoint union,

GF (p)× = K0 ∪K1 ∪K2 · · · ∪Kn−1, (2)
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where Ki = qiK, 0 ≤ i ≤ n − 1. Note that, from the equation (2), any element
in GF (p)× is uniquely written as τsqt for some 0 ≤ s ≤ k− 1 and 0 ≤ t ≤ n− 1.
For each 0 ≤ i ≤ n− 1, we have

ααqi

=
k−1∑
s=0

βτs
k−1∑
t=0

βτ tqi

=
k−1∑
s=0

k−1∑
t=0

βτs(1+τ t−sqi) =
k−1∑
s=0

k−1∑
t=0

βτs(1+τ tqi).

(3)

There are unique 0 ≤ u ≤ k−1 and 0 ≤ v ≤ n−1 such that 1+τuqv = 0 ∈ GF (p).
If t = u or i = v, then we have 1 + τ tqi ∈ Kσ(t,i) for some 0 ≤ σ(t, i) ≤ n − 1
depending on t and i. Thus we may write 1 + τ tqi = τ t′qσ(t,i) for some t′. Now
when i = v,

ααqi

=
k−1∑
s=0

k−1∑
t=0

βτs(1+τ tqi) =
k−1∑
s=0

k−1∑
t=0

βτs(τ t′qσ(t,i))

=
k−1∑
t=0

k−1∑
s=0

βτs+t′qσ(t,i)
=

k−1∑
t=0

αqσ(t,i)
.

(4)

Also when i = v,

ααqv

=
k−1∑
s=0

k−1∑
t=0

βτs(1+τ tqv)

=
∑
t�=u

k−1∑
s=0

βτs(τ t′qσ(t,v)) +
k−1∑
s=0

βτs(1+τuqv)

=
∑
t�=u

k−1∑
s=0

βτs+t′qσ(t,v)
+

k−1∑
s=0

1 =
∑
t�=u

αqσ(t,v)
+ k.

(5)

Therefore ααqi

is computed by the sum of at most k basis elements in {α, αq, · · · ,
αqn−1} for i = v and ααqv

is computed by the sum of at most k−1 basis elements
and the constant term k ∈ GF (q). Using these ideas, Gao et al. [5] showed the
following.

Theorem 1. Let α be a Gauss period of type k in GF (qn) with k ≥ 2. Then
for any 0 ≤ r < qn, αr can be computed in (k − 1)(q − 1)n(n + 1) additions in
GF (q).

Sketch of Proof. Write r =
∑n−1

j=0 rjq
j with 0 ≤ rj < q. Then the following

algorithm gives an output αr .
Assuming that the qth Frobenius map α → αq is (almost) free, from the

equations (4) and (5), Aαqi

is computed by at most (k − 1)(n + 1) additions
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Table 1. Exponentiation algorithm in [5].

Input: r =
∑n−1

j=0 rjq
j with 0 ≤ rj < q

Output: αr

A ← 1
for (i = 0 to n − 1 ; i + +)

if ri �= 0
for (j = 1 to ri ; j + +)

A ← Aαqi

end for
end if

end for

in GF (q) in a redundant basis {α, αq, · · · , αqn−1
, 1}. For each i, the inner for-

loop A ← Aαqi

runs ri times. Therefore the total number of multiplications
A ← Aαqi

is
∑n−1

i=0 ri ≤ (q − 1)n. It follows that one can compute αr by (k −
1)(n + 1)(q − 1)n = (k − 1)(q − 1)n(n + 1) additions in GF (q) in a redundant
basis, whose complexity is O((k − 1)(q − 1)n2) for fixed k and q. 	


If the above theorem should have any application, it must be guaranteed that
the Gauss period α is a primitive element in GF (qn), or at least is of high order.
This is not always satisfied. For example, a Gauss period α of type I or (n, 1)
is never a primitive element since αn+1 = 1 and n + 1 << qn. However, various
computational results imply that a Gauss period α of type k, k ≥ 2, over GF (q)
is very often primitive, and even in the cases that α is not primitive, it usually
has a very high multiplicative order. For example, it is known [5] that, among
the 177 values of n ≤ 1000 for which a Gauss period α of type II or (n, 2)
over GF (2) exists, α is a primitive element for 146 values of n. The same table
in [5] implies that a Gauss period of type (n, k) over GF (2) is also very often
primitive for k ≥ 3. In the table, it is shown that for approximately 1050 values
of 2 ≤ n ≤ 1200, there is a primitive Gauss period of type k for some k, and
in many cases, one can choose k < 20. A theorem supporting this experimental
evidence is obtained by Gathen and Shparlinski [9], where it is shown that a
Gauss period of type II in GF (qn) has order at least 2

√
2n−2 for infinitely many

n. On the other hand, Feisel et al. [8] extend the notion of Gauss periods to
obtain general Gauss periods which, in many cases, have low computational cost
in multiplication than the usual Gauss periods.

3 Signed Digit Representation
and Exponentiation in GF (qn) Using a Type II ONB

3.1 Binary NAF and Balanced Ternary Form

Every integer 0 ≤ s < 2n has a unique binary expansion s =
∑n−1

i=0 si2i with
si = 0, 1. This binary representation is particularly useful when one computes
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an exponentiation in GF (2n) using a normal basis because the Frobenius map
is free in this case. A nonzero si = 1 contributes one multiplication A ← Aα
during the computation of αs in Table 1. The average number of nonzero bits of
arbitrary 0 ≤ s < 2n is n

2 . On the other hand, one may express s =
∑n

i=0 si2i

with si = 0,±1 as follows. From the usual binary expansion of s, if there is a
consecutive nonzero bits such as 2j+1 + 2j (i.e. · · · 11 · · · ), then replace it by
2j+2 − 2j (i.e. · · · 101̄ · · · with 1̄ = −1). The resulting expression is unique and
it is called a nonadjacent form (NAF) of s. In fact, this expression is completely
determined by the following condition,

Definition 2. A nonadjacent form (NAF) of an integer s is a representation
s =

∑
i=0 si2i with si = 0,±1 such that sisi+1 = 0 for all i ≥ 0.

It is well known [12,14] that every positive integer has a unique NAF and the
average number of nonzero bits of the integer 0 ≤ s < 2n is n

3 . This NAF
representation of an integer can be generalized [13,14] to the case of radix m
(m ≥ 2) representation. It is shown [12,13,14] that the length n NAF of an
integer with radix m representation has the expected number of nonzero digits
nm−1

m+1 . Since the expected number of nonzero digits of an integer with usual
radix m representation is nm−1

m , the improvement made by using NAF is not
so spectacular for the case m ≥ 3. Therefore for the finite field GF (3n) with
characteristic three, we will express the exponents using so called the balanced
ternary representation [16].

Definition 3. A balanced ternary form of an integer s is a representation s =∑
i=0 si3i with si = 0,±1.

When 0 ≤ s < 3n, from the usual ternary representation of s, if there is a digit 2
(i.e. 2·3j for some j), then replace it by 3j+1−3j. The resulting expression can be
written as s =

∑n
i=0 si3i with si = 0,±1. Every integer s has a unique balanced

ternary representation and it can be shown as follows. If s has two different
expressions s =

∑
i=0 si3i =

∑
i=0 s′i3

i, letting j be the least nonnegative integer
satisfying

sj = s′j , and si = s′i, 0 ≤ i < j, (6)

we have
∑

i=j si3i =
∑

i=j s′i3
i. Dividing this equality by 3j and taking modulo

3, we get sj ≡ s′j (mod 3). This is a contradiction because the equation (6) says
sj = s′j and sj , s

′
j = 0,±1.

3.2 Efficient Exponentiation Using a Type II ONB
with NAF and Balanced Ternary Form

In section 2, we showed that one has the quadratic time complexity O((k−1)(q−
1)n2) for exponentiation of a Gauss period α of type k. To use a signed digit
representation for the exponent of α effectively, it is necessary to compute Aα−1

for arbitrary A ∈ GF (qn) and the cost of the computation should be less or equal
to the cost of computing Aα. For arbitrary Gauss periods of type k, this is not
an easy problem since one needs to find the inverse of the multiplication matrix
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determined by the Gauss period of type k and the usual method of Gaussian
elimination requires too much time. On the other hand, when k = 2, one has a
nice basis called the palindromic representation [6,7] which is a permutation of a
normal basis. Recall that there exists a Gaussian normal basis {α, αq, · · · , αqn−1}
of type II in GF (qn) if and only if gcd(2n/ordpq, n) = 1, i.e. ordpq = 2n or
ordpq = n with n = odd. This is so called a type II optimal normal basis (ONB)
and it is easy to see that our definition is equivalent to the following definition
used in some other literature [6,7].

Definition 4. Let GF (qn) be a finite field with qn elements where 2n + 1 = p
is a prime. Suppose that either (�) q is a primitive root (mod p) or (��) −1
is a quadratic nonresidue (mod p) and q generates all the quadratic residues
(mod p). Then the basis of the form {α, αq, · · · , αqn−1} is called a type II optimal
normal basis (ONB) in GF (qn), where α = β + β−1 and β is a primitive pth
root of unity in GF (q2n).

Using the assumptions in the previous definition, one finds easily

αqs

= (β + β−1)qs

= βqs

+ β−qs

= βt + β−t, (7)

where 0 < t < p = 2n + 1 with qs ≡ t (mod p). Moreover, replacing t by p− t if
n+1 ≤ t ≤ 2n, we find that {α, αq, · · · , αqn−1} and {β+β−1, β2+β−2, · · · , βn+
β−n} are the same sets. That is, αqs

, 0 ≤ s ≤ n − 1 is just a permutation of
βs + β−s, 1 ≤ s ≤ n. This observation leads to the following definition.

Definition 5. Let β be a primitive pth (p = 2n + 1) root of unity in GF (q2n).
For each integer s, define αs as

αs = βs + β−s. (8)

Then for each integer s and t, we easily find

αsαt = (βs + β−s)(βt + β−t) = αs−t + αs+t. (9)

In other words, a multiplication of two basis elements has a simple expression
as a sum of two basis elements.

Lemma 6. We have α0 = 2 and αs = αt if and only if s± t ≡ 0 (mod 2n + 1).

Proof. It is clear that α0 = α0 + α−0 = 2 and αs = βs + β−s depends only on
the residue classes of s (mod 2n + 1) because β2n+1 = 1. Moreover α2n+1−s =
β2n+1−s + β−(2n+1−s) = β−s + βs = αs. 	


From now on, we are mainly interested in the field arithmetic using the basis
{α1, α2, · · · , αn} or {α1, α2, · · · , αn, 1} depending on whether q = even or odd.
To deduce a low complexity field arithmetic, the relation (9) with arbitrary in-
dices s and t will be frequently used. Though our method is applicable to all
finite fields with small characteristic, we will focus on the cases with characteris-
tic two and three since these are the most widely used small characteristic finite
fields.
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Let us consider the finite field GF (qn) with q = 2 or 3 and suppose that we
have a basis {α1, α2, · · · , αn} for GF (qn) where α = α1 = β + β−1 is a type II
optimal normal element. Let A =

∑n
i=1 aiαi and B =

∑n
i=1 biαi be in GF (qn)

such that
B = Aα−1. (10)

Then using the equation (9) and Lemma 6, we get

A = Bα =
n∑

i=1

biαiα1 =
n∑

i=1

bi(αi−1 + αi+1)

= b1(2 + α2) + b2(α1 + α3) + · · ·+ bn−1(αn−2 + αn) + bn(αn−1 + αn)
= 2b1 + b2α1 + (b1 + b3)α2 + (b2 + b4)α3 + · · ·

+ (bn−2 + bn)αn−1 + (bn−1 + bn)αn

= 2b1 + b2α1 + (bn−1 + bn)αn +
n−1∑
i=2

(bi−1 + bi+1)αi.

(11)

If we use a redundant basis {α1, α2, · · · , αn, 1} with A =
∑n

i=1 aiαi + a0 and
B =

∑n
i=1 biαi + b0, then the same computation shows that

A = Bα =
n∑

i=1

biαiα1 + b0α1 =
n∑

i=1

bi(αi−1 + αi+1) + b0α1

= 2b1 + (bn−1 + bn)αn +
n−1∑
i=1

(bi−1 + bi+1)αi.

(12)

Theorem 7. Using the basis {α1, α2, · · · , αn}, one needs n − 1 additions in
GF (2) to compute B = Aα−1 in GF (qn) with q = 2, and using the redundant
basis {α1, α2, · · · , αn, 1}, one needs n additions in GF (3) to compute B = Aα−1

in GF (qn) with q = 3.

Proof. First, let us consider the case q = 2. From (11), we get 2b1 = 0 and

a1 = b2, an = bn−1 + bn, and ai = bi−1 + bi+1 for 2 ≤ i ≤ n− 1. (13)

Therefore using the above relations, we have the values bi recursively for even
indices i as

b2 = a1, b4 = b2 + a3, b6 = b4 + a5, · · · , b2s = b2s−2 + a2s−1, (14)

where s = �n
2 �, i.e. n = 2s or 2s+1. If n = 2s, then using (13) again, we get the

values of bi recursively for odd indices i as

bn−1 = bn +an, bn−3 = bn−1 +an−2, bn−5 = bn−3 +an−4, · · · , b1 = b3 +a2, (15)

and if n = 2s + 1, i.e. if 2s = n− 1, then we have the values of bi for odd i as

bn = bn−1 + an, bn−2 = bn + an−1, bn−4 = bn−2 + an−3, · · · , b1 = b3 + a2. (16)
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Thus the computation of bi (i = 2, 1 ≤ i ≤ n) needs one addition with b2 = a1.
Consequently the total number of necessary additions in GF (2) to compute
Aα−1 is n− 1.

Now let us consider the case q = 3. We will use the redundant basis {α1, α2,
· · · , αn, 1} in this case. Writing A, B ∈ GF (3n) as A =

∑n
i=1 aiαi + a0 and

B =
∑n

i=1 biαi + b0, the equation (12) says

a0 = −b1, an = bn−1 + bn, and ai = bi−1 + bi+1 for 1 ≤ i ≤ n− 1. (17)

Thus using the above relations, we may compute bi for odd indices i as

b1 = −a0, b3 = −b1 + a2, b5 = −b3 + a4, · · · , b2s+1 = −b2s−1 + a2s, (18)

where s = �n−1
2 �, i.e. n = 2s + 1 or 2s + 2. If n = 2s + 1, then using (17) again,

bn−1 = −bn+an, bn−3 = −bn−1+an−2, bn−5 = −bn−3+an−4, · · · , b0 = −b2+a1,
(19)

and if n = 2s + 2, i.e. if 2s + 1 = n− 1, we get

bn = −bn−1 + an, bn−2 = −bn + an−1, bn−4 = −bn−2 + an−3, · · · , b0 = −b2 + a1.
(20)

Therefore the computation of bi (i = 1, 0 ≤ i ≤ n) needs one addition with
b1 = −a0. Consequently the total number of necessary additions in GF (3) to
compute Aα−1 is n using the redundant basis {α1, α2, · · · , αn, 1} in GF (3n). 	


Based on Theorem 7, we propose a new exponentiation algorithm with signed
digit representation of the exponents as follows.

Table 2. New exponentiation algorithm using signed digit representation with a type
II ONB in GF (qn).

Input: r =
∑n

j=0 rjq
j with rj = 0,±1

Output: αr

A ← 1
for (i = n to 0 ; i −−)

A ← Aqαri

end for

The above algorithm is just a simple form of q-ary window method which
computes

αr = α
∑n

i=0 riq
i

= (· · · (((αrn)qαrn−1)qαrn−2)q · · · )qαr0 . (21)

Compared with the algorithm in Table 1, our algorithm has only one for-loop
and the computational cost is significantly reduced from the original algorithm
of Gao et al. [5].
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4 Comparison of Our Algorithm with the Method
of Gao et al. and the Polynomial Basis Method

The complexity of one exponentiation using a type k Gaussian normal basis
in the algorithm of Table 1 is bounded by (k − 1)(q − 1)n(n + 1) additions in
GF (q). For the case of a type II ONB (i.e. k = 2), it is (q− 1)n(n + 1) additions
in GF (q). Therefore in GF (2n), since the expected number of nonzero bits of
the exponent r is n

2 with the usual binary representation, the average number
of GF (2)-additions to compute αr ∈ GF (2n) using the method of Gao et al. is
1
2n(n+1) ≈ 1

2n2. For GF (3n), since the expected number of nonzero digits of the
exponent r is 2

3n with equal probability of appearing 1 and 2 in the exponent,
the expected value of the sum of all digits of the exponent r is n, which is the
number of the iterations of the inner for-loop in Table 1. Therefore the average
number of GF (3)-additions to compute αr ∈ GF (3n) using the method in [5] is
n(n + 1) ≈ n2.

Now let us evaluate the complexity of our proposed method. It is trivial,
from the equations (11) and (12), to show that the number of necessary GF (q)-
additions to compute Aα for any A ∈ GF (qn) is also n− 1 if q = 2 and is n if
q = 3. For GF (2n), we use a nonadjacent form (NAF) of the exponent r and the
expected number of nonzero bits of r with NAF is n

3 . Thus, in view of Theorem
7, the average number of GF (2)-additions to compute αr ∈ GF (2n) using our
algorithm is 1

3n(n − 1) ≈ 1
3n2. For GF (3n), the expected number of nonzero

digits (either 1 or −1) of the exponent r with balance ternary representation
is 2

3n and the number of necessary GF (3)-additions to compute αr ∈ GF (3n)
using our method with Theorem 7 is 2

3n · n = 2
3n2. Therefore for both cases

of GF (2n) and GF (3n), our algorithm improves the method Gao et al. [5] by
the factor of 33 percent in terms of the necessary additions in GF (q) for one
exponentiation in GF (qn).

We also claim that our method is superior to the method of using a poly-
nomial basis with signed digit representation. Intuitively, the reason is that the
qth Frobenius map A → Aq ∈ GF (qn) is not free in a polynomial basis repre-
sentation and one should repeatedly take the qth power n times to get the result
of one exponentiation, while all these operations are free in a normal basis. The
complexity of the Frobenius map is heavily dependent on the weight (the num-
ber of nonzero coefficients of the polynomial) of the given irreducible polynomial
f(X) ∈ GF (q)[X ]. It is not difficult to see that one has the lowest complexity
exponentiation algorithm when one use a trinomial f(X) = Xn + aXk + b.

For a binary field GF (2n), Wu [10] gave an exact estimation of the number
of necessary additions in GF (2) for one squaring (i.e. q = 2) using a trinomial
f(X) = Xn + Xk + 1 ∈ GF (2)[X ] with 1 ≤ k < n

2 . That is, when nk = odd,
the number of necessary GF (2)-additions is 1

2n, and when nk = even, it is 3
4n.

On the other hand, it can be derived easily [11] that the operation A ← Aα±1

needs just one addition, where α is a zero of the trinomial f(X). Thus using a
trinomial basis with signed binary method in [11], one gets the complexity of
one exponentiation αr ∈ GF (2n) as 1

2n · n + 1 · n
3 ≈

1
2n2 additions if nk = odd,

and 3
4n · n + 1 · n

3 ≈
3
4n2 additions if nk = even.
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Table 3. Comparison of the number of necessary additions in GF (q) for one exponen-
tiation.

[5] [10,11] This paper

Basis type II ONB trinomial type II ONB

In GF (2n) 1
2
n2 1

2
n2 or 3

4
n2 1

3
n2

In GF (3n) n2 —— 2
3
n2

Table 3 shows that our proposed exponentiation algorithm is superior to
other algorithms using either a normal or a polynomial basis. The number of
necessary GF (q)-additions of our method is 33 percent reduced from the method
with a type II ONB of Gao et al. [5], and also at least 33 percent reduced from
the method in [10,11] using a signed bit representation with a trinomial basis
f(X) = Xn + Xk + 1 for GF (2n).

We conclude this section by mentioning that the base change between {α1, α2,
· · · , αn} and {α1, α2, · · · , αn, 1} contributes a negligible cost. This can be veri-
fied as follows. From Definition 5, using β2n+1 = 1, we have

α1 + α2 + · · ·+ αn = β + β−1 + β2 + β−2 + · · ·+ βn + β−n

= β + β2 + · · ·+ βn + βn+1 + βn+2 + · · ·+ β2n

=
β(β2n − 1)

β − 1
=

1− β

β − 1
= −1.

(22)

Therefore using the above relation, the redundant expression of A can be trans-
formed into the expression with respect to the standard basis as follows,

A =
n∑

i=1

aiαi + a0 =
n∑

i=1

aiαi − a0

n∑
i=1

αi =
n∑

i=1

(ai − a0)αi. (23)

Therefore one needs just n additions in GF (q) for the base change, which is negli-
gible compared with the quadratic time complexity O(n2) of one exponentiation
in GF (qn).

5 Distribution of Type II Optimal Normal Bases

In previous section, we showed that our method of using a Gaussian normal basis
of type II outperforms the method with a trinomial basis for an exponentiation
in GF (2n), because the Frobenius map contributes a significant portion of the
computation delay in a polynomial basis. It is expected that the same result holds
for other low characteristic finite fields GF (qn) when we use similar techniques
in [10,11]. It should be mentioned that one advantage of using a polynomial
basis is that there are more irreducible (and primitive) trinomials than type II
Gaussian normal bases [7,15]. However, a type II ONB appears frequently enough
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for cryptographic purposes (like secure pseudo random number generators). For
example, a table in [7] shows that the number of n ≤ 2000 for which a type II
ONB exists in GF (2n) is 324. It is shown [7] that a type II ONB exists in GF (2n)
when n = 2, 3, 5, 6, 9, 11, 14, 18, 23, 26, 29, 30, 33, 35, 39, 41, 50, 51, 53, 65, 69, · · · .
On the other hand, the same table shows that the number of n ≤ 2000 for
which a type I ONB (i.e. a Gaussian normal basis of type I) exists is 118. We
have a type I ONB when n = 2, 4, 10, 12, 18, 28, 36, 52, 58, 60, 66, 82, 100, 106, · · · .
Since one has the ratio 324/118 ≈ 2.75, it can be said that, for binary fields, a
type II ONB appears 2.75 times more frequently than a type I ONB, though this
is not a really correct statement from a mathematical point of view. However,
we may give a satisfactory argument on the the density of n for which a type I
ONB exists in GF (qn) using the widely believed and one of the most important
conjectures in mathematics, the generalized ‘Riemann Hypothesis’ [20], and from
which we may have a rough estimation on the distribution of n for which a type
II ONB exists in GF (qn).

Let a = 0,±1 be an integer which is not an rth power for any r > 1. Define
Na(x) be the number of primes p ≤ x for which a is a primitive root (mod p).
In 1927, E. Artin conjectured that Na(x) is related to the following asymptotic
formula,

lim
x→∞

Na(x)
x/ lnx

= C(a), (24)

where C(a) = CaC is a constant depending on a. That is, writing a = a′b2 with
a′ square free, we have the constant Ca depending on a,

Ca = 1 if a′ ≡ 1 (mod 4), Ca = 1− μ(a′)
∏
q|a′

1
q2 − q − 1

if a′ ≡ 1 (mod 4),

(25)
where μ(a′) is the usual Möbius function and the product runs through all primes
q dividing a′. The Artin constant C is expressed as

C =
∏
q

(1 − 1
q2 − q

) = 0.3739558 · · · , (26)

where the product runs through all primes. This conjecture was proved by Hooley
[17] using the generalized Riemann Hypothesis. Later, a weaker form of Artin’s
conjecture was proved by Gupta and Murty [18] and also by Heath-Brown [19]
without using Riemann Hypothesis. However, at this moment, there is no known
single example of a for which the conjecture of Artin is proved without any
extra assumption or hypothesis. Based on extensive computational evidence,
it is generally believed that Riemann Hypothesis and also Artin’s conjecture
are true. Therefore, to apply the conjecture to our case, let a = 2 or 3. Then,
from the equation (25), we have Ca = 1 and thus C(a) = C = 0.3739558 · · · .
Consequently by using the well known ‘Prime Number Theorem’ [20] saying

lim
x→∞

π(x)
x/ lnx

= 1, (27)

where π(x) is the number of primes ≤ x, we conclude
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lim
x→∞

Na(x)
π(x)

= lim
x→∞

Na(x)
x/ lnx

· x/ lnx

π(x)
= 0.3739558 · · · . (28)

In other words, a (= 2 or 3) is a primitive root (mod p) for approximately
37.39558 · · · ≈ 37.4 percent of all primes p. And for those primes p, n = p − 1
gives the values of n for which a type I ONB exists.

Recall that for the case of a binary field, the table in [7] implies that there
are 2.75 times more n ≤ 2000 for which a type II ONB exists in GF (2n) than
the number of n ≤ 2000 for which a type I ONB exists in GF (2n). Therefore
letting D(x) be the number of n ≤ x for which a type II ONB exists in GF (2n),
we get the following,

lim
x→∞

D(x)
π(x)

= lim
x→∞

D(x)
N2(x)

· N2(x)
π(x)

≈ 2.75 · 0.374 ≈ 1.03. (29)

An obvious implication is that the field size n for which a type II ONB exists in
GF (2n) appears as frequently as a prime number appears in the set of natural
numbers.

6 Conclusions

We proposed an efficient exponentiation algorithm using a Gaussian normal basis
of type II with signed digit representation of the exponents for small character-
istic finite fields GF (qn). Our method uses a binary nonadjacent form of the
exponent if q = 2 and a balanced ternary representation if q = 3. Though it is
supposed that computing Aα−1 is not so easy when one use a normal basis, we
showed that it is as efficient as computing Aα when we have a Gaussian normal
basis of type II. We also gave a rough estimation of the distribution of type
II optimal normal elements. A computational result implies that our algorithm
is significantly faster than previously proposed exponentiation algorithms using
either a normal basis or a polynomial basis for a finite field GF (qn) with small
characteristic.
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Abstract. It has recently been reported that the performance of hy-
perelliptic curve cryptosystems (HECC) is competitive to that of elliptic
curve cryptosystems (ECC). However, it is expected that HECC still can
be improved due to their mathematically rich structure. We consider here
the application of degenerate divisors of HECC to scalar multiplication.
We investigate the operations of the degenerate divisors in the Harley
algorithm and the Cantor algorithm of genus 2. The timings of these
operations are reported. We then present a novel efficient scalar multi-
plication method using the degenerate divisors. This method is applicable
to cryptosystems with fixed base point, e.g., ElGamal-type encryption,
sender of Diffie-Hellman, and DSA. Using a Xeon processor, we found
that the double-and-add-always method using the degenerate base point
can achieve about a 20% increase in speed for a 160-bit HECC. However,
we mounted an timing attack using the time difference to designate the
degenerate divisors. The attack assumes that the secret key is fixed and
the base point can be freely chosen by the attacker. Therefore, the attack
is applicable to ElGamal-type decryption and single-pass Diffie-Hellman
– SSL using a hyperelliptic curve could be vulnerable to the proposed
attack. Our experimental results show that one bit of the secret key for
a 160-bit HECC can be recovered by calling the decryption oracle 500
times.

Keywords: hyperelliptic curve cryptosystem, scalar multiplication, tim-
ing attack, degenerate divisor, efficient computation, SSL

1 Introduction

In 1989, Koblitz proposed hyperelliptic curve cryptosystems (HECC) [Kob89].
HECC has the advantage of shorter operand length than elliptic curve cryptosys-
tems (ECC), and it has been expected that HECC can attain a faster encryption
compared to ECC due to their rich algebraic structure. Recently some efficient
addition formulae of HECC have been proposed (see, for example, [Lan02a-c]),
and implementation in software shows the performance of HECC to be compet-
itive to that of ECC [PWG+03,Ava03b].
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When we implement a cryptosystem in a real security system, we have to
prepared for side channel attacks such as timing attack [Koc96] and power anal-
ysis [KJJ99]. A simple timing attack on HECC can reveal the hamming weight
of the secret scalar by measuring the computation time of the scalar multipli-
cation. The timing attack using the final subtraction of Montgomery multipli-
cation [Sch00,Sch02,SKQ01] is also applicable to HECC. Other possible attacks
use exceptional procedures of the addition formula [AT03,Ava03a,Gou03,IT03].
The addition formula of HECC involves many exceptional procedures, so that we
have many possibilities to use them in a timing attack. Note that these attacks
assume that the base point D can be freely chosen by the attacker and the secret
scalar d is fixed: we can apply our attack to HEC ElGamal-type decryption and
single-pass HEC Diffie-Hellman but not HEC DSA.

In this paper, we focus on the degenerate divisors of HECC, which has a lower
weight than g, where g is the genus of the underlying curve. We investigate pos-
sible degenerate divisors appearing in the Harley algorithm [Har00a,Har00b] and
Cantor algorithm [Can87,Kob89] of genus 2. The addition formulae to compute
these degenerate divisors have a different running time than the standard di-
visors. We estimated the time required to compute the doubling and addition
using the degenerate divisors. In general, the probability that these procedures
will have to be used in the addition formula is O(1/q), where q is the definition
field of HECC [Nag00]. However, in some cryptographic protocols we can use
the degenerate divisor in both positive and negative ways.

As a positive application, we present an algorithm to efficiently perform scalar
multiplication using a fixed base point. The degenerate divisor, which allows
faster hyperelliptic curve addition in the Harley algorithm, is used for the base
point. We found that the security of the underlying discrete logarithm prob-
lem is not decreased due to the random self reducibility. We also found that a
randomly chosen divisor with weight 1 achieves about 20% faster scalar multipli-
cation using the double-and-add-always method for a 160-bit HECC. Efficient
scalar multiplication with a fixed base point can be applied to ElGamal-type
encryption, sender of Diffie-Hellman, and DSA.

As a negative application, we propose a timing attack on HECC using the de-
generate divisors. The algorithm of recovering the secret key draws on previous
work [AT03,Ava03a,Gou03,IT03]. We will consider the attack on the hyperellip-
tic curve with genus 2, especially the Harley algorithm and Cantor algorithm.
Several explicit exceptional procedures suitable for the timing attack in the set-
ting are investigated. We examine the exceptional procedures which arise from
the divisors with weight 1, whose computational time is faster than the ordinary
one in the Harley algorithm. Then we show how to apply these procedures to the
timing attack. The exceptional procedures appear with negligible probability in
the scalar multiplication for a randomly chosen base point. Thus the exceptional
procedures cause a timing difference in the scalar multiplication from ordinary
operation. The proposed timing attack analyses the timing difference with many
sampling numbers. Our experiment on a Xeon processor using a 160-bit HECC
shows that the timing difference is about 0.02 ms for the exceptional case of the
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Harley algorithm. The difference is quite small, so that we apply the sampling
technique proposed by Dhem et al. [DKL+98]. We consider three different types
of timing: the timing with a randomly chosen divisor, timing with divisor Db

that brings about an exceptional procedure if the supposed bit is b = 0, 1. If b
is correct, the timing difference from the random divisor becomes larger than
otherwise. Our experiment successfully recovered one bit of secret key with 500
samples for a 160-bit HECC.

This paper is organized as follows: In Section 2, we describe the basic prop-
erties of HECC. In Section 3, we review the side channel attacks. In Section 4,
the degenerate divisors are investigated, and we present an efficient scalar multi-
plication using the degenerate divisors. In Section 5, we propose the new timing
attack of HECC and show the experimental results of genus 2 HECC.

2 Hyperelliptic Curve Cryptosystems

In this section we review hyperelliptic curve cryptosystems related to this paper.

2.1 Hyperelliptic Curve

Let g be a positive integer, and let K = Fq be a finite field of characteristic p,
q = pn where n is a positive integer. Hyperelliptic curve C of genus g over Fq is
defined by equation y2 + h(x)y = f(x), where f(x) is a monic polynomial over
Fq with degree 2g + 1 in x. h(x) is a polynomial over Fq with deg h ≤ g for even
characteristic and 0 for odd characteristic. Let Pi = (xi, yi) be a rational point
on curve C and P∞ be a point at infinity. The inverse of P = (x, y) is the point
−P = (x,−y− h(x)). We define point P as satisfying P = −P as a ramification
point.

A divisor D =
∑

miPi, mi ∈ Z, is defined as a formal sum of points Pi on C.
The set D of the divisors form an Abelian group. The degree(weight) of a divisor
D is defined as

∑
i mi, and we denote it by w(D). The set D0 of the degree

zero divisors is a subgroup of D. The divisor of a rational function on C, called
the principal divisor, is a finite formal sum of the zeros and poles. The set P of
principal divisors is a subgroup of D0. Denote by Jc(Fq) the Jacobian variety of
C defined over Fq. The divisor class group D0/P is isomorphic to the Jacobian
variety Jc(Fq). A semi-reduced divisor of a hyperelliptic curve is represented by
D =

∑
i miPi − (

∑
i mi)P∞, where mi ≥ 0 and Pi = −Pj for i = j. Mumford

reported that the semi-reduced divisor can be expressed by two polynomials
(u, v) of Fq[x], which satisfy the following conditions [Mum84]:

u(x) =
∏

i

(x− xi)mi , v(xi) = yi, deg v < deg u, v2 + hv − f ≡ 0 mod u.

A semi-reduced divisor with deg u ≤ g is called a reduced divisor. Any divisor
class of Jc(Fq) is uniquely represented by a reduced divisor. Hereafter we denote
D ∈ Jc(Fq) by a reduced divisor D = (u, v). The unit element of additive group
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Jc(Fq) is (1, 0) and the inverse of divisor D = (u, v) is −D = (u, v + h) where
the second polynomial is reduced modulo u.

In this paper, we deal with hyperelliptic curves that are suitable for crypto-
graphic purposes, for example, the order of Jacobian #Jc(Fq) has only a small
cofactor, say c. Based on Hasse-Weil range, the size of Fq have to satisfy at least
g log2 q ≈ 2160. (We call 160-bit HECC.)

2.2 Scalar Multiplication

The basic operation for implementing HECC is the scalar multiplication, which
computes dD = D + · · · + D (d times) for a divisor D ∈ Jc(K) and integer d.
Denote by (dm−1 · · · d1d0)2 the m-bit binary representation of d. The standard
method of computing scalar multiplication dD is the following binary method.

Algorithm 1 Binary Method
Input: d = (dm−1 · · · d1d0)2, D ∈ Jc(K), (dm−1 = 1)
Output: dD
1. D1 ← D
2. for i from m− 2 to 0 do
3. D1 ← HECDBL(D1)
4. If di = 1 then D1 ← HECADD(D1, D)
5. Return(D1)

We denote by HECDBL and HECADD hyperelliptic doubling and addition,
e.g., HECDBL(D1) = 2D1 and HECADD(D1, D) = D1+D, respectively. The
binary method requires (m− 1) HECDBL and (m− 1)/2 HECADD on average
for randomly chosen d.

2.3 Addition Formulae

In order to implement a group operation in Jc(Fq), we deploy addition for-
mulae assembled by the operations of polynomial ring Fq[x]. There are two
basic algorithms, namely Cantor algorithm [Can87,Kob89] and Harley algo-
rithm [Har00a,Har00b]. Cantor algorithm is a universal addition formula. It is
used for all hyperelliptic curves with any genus g, so we are able to compute both
HECDBL and HECADD with one formula (however, the computation times of
HECDBL and HECADD are not the same). However, the Cantor algorithm is
quite slow due to its versatility. The Harley algorithm aims at efficiently imple-
menting the group operations for a small genus. The arithmetic of HECDBL and
HECADD is independently optimized based on their explicit operations.

In the following, we describe the Cantor algorithm [Can87,Kob89]. Let Di =
(ui(x), vi(x)) ∈ Jc(Fq) be the reduced divisors, i = 1, 2. The reduced divisor D3

of addition D1 + D2 is computed as follows:
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Algorithm 2 Cantor Algorithm
Input: D1 = (u1, v1), D2 = (u2, v2)
Output: D3 = (u3, v3) = D1 + D2

1. d = gcd(u1, u2, v1 + v2 + h) = s1u1 + s2u2 + s3(v1 + v2 + h)
2. u← u1u2/d2, v ← (s1u1v2 + s2u2v1 + s3(v1v2 + f))/d mod u)
3. while deg(u) > g

u′ ← (f − hv − v2)/u, v′ ← −h− v mod u′, u← MakeMonic(u′), v ← v′

4. u3 ← u, v3 ← v
5. return (u3, v3)

Step 1 and Step 2 are called the composition part and Step 3 is called the
reduction part. The composition part computes the semi-reduced divisor D =
(u, v) that is equivalent to D3. The reduction part finds the reduced divisor
D3 = (u3, v3).

The Harley algorithm is an explicit representaition of the Cantor algorithm
using the weight classification of the divisors D1 and D2. The Harley algorithm
includes the most frequent weight classification for addtion or doubling. We
denote the most frequent weight classification by HarleyADD and HarleyDBL,
respectively. The HarleyADD and HarleyDBL satisfy the following conditions.

HarleyADD : w(D1) = g, w(D2) = g, w(D3) = g, D1 �= D2, gcd(u1, u2) = 1,

HarleyDBL : w(D1) = g, w(D3) = g, D1 = D2, gcd(h, u1) = 1.

3 Side Channel Attacks

In this section we review the side channel attacks which HECC is vulnerable to.
At Crypto’96 Kocher introduced the timing attack (TA), which considers the

secret key in cryptographic devices [Koc96]. TA measures the computation time
for various inputs and analyzes the difference between these times. For example,
if we compute a scalar multiplication dD using the binary method (Algorithm
1), then TA can reveal the hamming weight of secret key d. The standard way
to resist this attack is the following double-and-add-always method:

Algorithm 3 Double-and-Add-Always Method
Input: d = (dm−1 · · · d1d0)2, D ∈ Jc(K), (dm−1 = 1)
Output: dD
1. D[0]← D
2. for i from m− 2 to 0 do
3. D[0]← HECDBL(D[0]), D[1]← HECADD(D[0],D), D[0]← D[di]
4. Return(D[0])

The double-and-add-always method always computes HECADD whether di = 0
or 1. Therefore, TA cannot compute the bit hamming weight of d. There is an-
other type of timing attack. In the RSA cryptosystem, the attacker can utilize the
existence of the final subtraction in Montgomery multiplication [Sch00, Sch02,
SKQ01]. The same argument can be applied to HECC.
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At Crypto ’99 Kocher et al. introduced simple power analysis (SPA) and dif-
ferential power analysis (DPA) to reveal the secret key by measuring the power
consumption of cryptographic devices [KJJ99]. SPA uses only a single obser-
vation of the power to obtain information, and DPA uses many observations
together with statistical tools. Algorithm 1 is vulnerable to SPA. The operation
HECADD is computed only if the corresponding bit is 1, although HECDBL is
always computed. HECDBL and HECADD show different power consumption
curves because they are different operations, as is described in Section 2. Thus
the SPA can detect the secret bits. In order to defend against SPA, we must
eliminate the relation between the addition formulas and the bit information.
The double-and-add-always method in the previous section can be used to de-
fend against SPA. Even if a scheme is secure against SPA, it might be insecure
against DPA. The standard method to resist DPA is randomizing the parameters
of the curve [Cor99,JT01]. However, Goubin proposed an extension of DPA to
an elliptic curve cryptosystem [Gou03]. He pointed out that the point (0, y) is
not fully randomized by the standard countermeasures against DPA. Recently,
Avanzi extended his attack to a hyperelliptic curve cryptosystem [Ava03a]. He
noted that the divisors with zero coefficient could be used in a Goubin-type
attack, in which one of the coefficients of u or v for divisor (u, v) would be zero.

Izu and Takagi proposed an exceptional procedure attack by using the excep-
tional procedure in the addition formula of ECC [IT03]. The standard addition
formula of ECC bring about an exceptional procedure only if either the input
or output is infinity point O. The order of elliptic curve #E is usually chosen
such that #E is the product of a large prime and a very small integer. When
scalar d is smaller than the order of elliptic curve #E, the exceptional procedure
occurs only if the order of the processing point is small. Thus, we can detect this
attack by checking if the base point does not belong to small group before scalar
multiplication. Avanzi also mentioned the possibility of extending this attack to
hyperelliptic curve cryptosystems [Ava03a]. However, the details of the extended
attack require further discussion.

4 Degenerate Divisors of HECC

We assume here that the genus of hyperelliptic curves is equal to 2 and the
characteristic is even for the sake of convenience. However, all discussions are
applicapble to higher genus > 2 and an odd prime characteristic.

We deal with the divisor with weight 1, and we define it as the degenerate
divisor.

Definition 1. Let C be a hyperelliptic curve over F2n , let Jc(F2n) be the Jaco-
bian of curve C. We call reduced divisor D = (u, v) ∈ Jc(F2n) degenerate, if the
degree of D is smaller than g, namely deg u < g.

Let D1 = (u1, v1), D2 = (u2, v2) be the reduced divisors of Jacobian Jc(F2n).
Denote by D3 the addition of D1 + D2. There is the following possible group
operation with degenerate divisors:
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ExHarADD2+2→1: w(D1) = 2, w(D2) = 2, w(D3) = 1, D1 �= D2, gcd(u1, u2) = 1,

ExHarADD1+2→2: w(D1) = 1, w(D2) = 2, w(D3) = 2, D1 �= D2, gcd(u1, u2) = 1,

ExHarDBL1→2: w(D1) = 1, w(D3) = 2, D1 = D2, gcd(h, u1) = 1,

ExHarDBL2→1: w(D1) = 2, w(D3) = 1, D1 = D2, gcd(h, u1) = 1.

Similarly, there could exist other exceptional procedures using degenerate di-
visors, for instance, ExHarADD1+2→1 and ExHarADD1+1→2. However, these cases
are not suitable for application to scalar multiplication, because the combination
of divisors D1, D2, D3 is not freely chosen. In this paper we do not consider these
other exceptional procedures.

The computational cost of these exceptional procedures strongly depends how
to implement the addition formulae. In the following we assume g = 2. Table 1
shows the cost of the Harley algorithm and its degenerate algorithms improved
by Lange [Lan02a] and Sugizaki et al. [SMC+02]. The explicit algorithms for
HarleyDBL and its degenerate variations are shown in the full version of this
paper [KKA+04]. We evaluate the computational cost according to the time
of one multiplication M and one inversion I. The exceptional cases are clearly
faster than the ordinary cases.

Table 1. Number of multiplication and inversion of Harley Algorithm.

Addition Formula Cost

HarleyADD 1I + 25M
HarleyDBL 1I + 27M

ExHarADD2+2→1 1I + 14M
ExHarADD1+2→2 1I + 11M
ExHarDBL2→1 1I + 17M
ExHarDBL1→2 1I + 7M

The total cost for computing the scalar multiplication with the double-and-
add-always method is 318I + 8268M on average for a 160-bit HECC, if there is
no exceptional procedure during the computation. For example, it is 10112.4M
for 1I = 5.8M .

4.1 Efficient Scalar Multiplication Using Degenerate Divisors

In this section we present efficient scalar multiplication using degenerate divisors.
The main thrust of our improvement is to choose a degenerate divisors as

the base point. As we noted in the previous section, the computational cost
of group operation between standard divisors and degenerate divisors are quite
different. (See Table 1 and [KKA+04]. ) For example, ExHarADD is faster than
HarleyADD. Note that the scalar multiplication is usually computed from the
most significant bit because we can utilize efficient mixed coordinates for the
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affine base point D [CMO98]. Indeed, the binary method (Algorithm 1) in Sec-
tion 2.2 is a left-to-right method, and thus the base point D is added to D1

during the scalar multiplication dD. In our case, the base point D is chosen as
the degenerate divisor (e.g., w(D) < g), so ExHarADD can be calculated more
efficiently than the standard HECADD. Therefore we are able to achieve efficient
scalar multiplication using the degenerate base point D.1

Here we have a question about the security of choosing the degenerate divisor
as the base point. The following theorem can be easily proven thanks to random
self reducibility. (See [KKA+04] for the proof.)

Theorem 1. Let J be the Jacobian of a hyperelliptic curve of genus g, where #J
c

is prime. We assume that D̄ = (u, v) is the degenerate divisor, where deg u < g.
Solving the discrete logarithm problem with base point D̄ is as intractable as
using a random divisor of J .

From this theorem, the special base point has no influence the security of the
underlying discrete logarithm problem.

The presented efficient scalar multiplication with the fixed base point can
be applied only to ElGamal-type encryption, the sender of Diffie-Hellman, and
DSA. The scalar of these schemes is usually an ephemeral random number, and
thus we focus only on SPA, not DPA. A standard countermeasure against SPA
is the double-and-add-always method (Algorithm 3) in Section 3. Note that
SPA-resistant addition chains (e.g., window-based methods) are not used for the
efficiency improvement using the degenerate base point, because it is difficult to
generate two degenerate divisors D, aD with previously known integer a.

We assume that the scalar multiplication is computed using the double-and-
add-always method (Algorithm 3). We choose the divisor with the weight 1 as
the base point D, and then ExHarADD1+2→2 is used for HECADD. The power
consumption curve of the scalar multiplication shows the fixed pattern, namely
the repeats of the power consumption curve of HarleyDBL and ExHarADD1+2→2.
However, HECADD 2D + D cannot be computed using ExHarADD1+2→2, so we
must use different addition formula ExHarADD1+2→2

D+2D because D = P − P∞ and
2D = P + P − 2P∞ have a common factor.

We compare the computational cost of the scalar multiplication for a divisor
with weight 1, with that for a divisor with weight 2. For the divisor with weight
1, the first HECDBL and HECADD costs 1I + 7M (ExHarDBL1→2) and 1I +
24M (ExHarADD1+2→2

D+2D ) respectively. The other HECDBL and HECADD costs
1I+27M (HarleyDBL) and 1I+11M (ExHarADD1+2→2) respectively. Therefore
the total cost of the scalar multiplication is (1I + 7M) + (1I + 24M) + ((1I +
27M) + (1I + 11M))× 158 = 318I + 6035M . On the other hand, for a divisor
with weight 2, HECDBL and HECADD costs 1I + 27M (HarleyDBL) and 1I +
25M (HarleyADD), respectively. The total cost of the scalar multiplication is
((1I + 27M) + (1I + 25M))× 159 = 318I + 8268M . Thus, the proposed scheme
can achieve about 22% improvement under 1I = 5.8M .
1 D is randomly generated from a point P on C. The most efficient choice of P is

(0, y) [KKA+04].
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Table 2. Improved timing of scalar multiplication.

Base Point Timing

random weight 2 13.36 ms
random weight 1 10.92 ms

In order to demonstrate the improvement of our algorithm, we implemented
the proposed scheme (See Table 2). For our experiment we chose the following
hyperelliptic curve with genus 2 from [HSS00]: Let F283 be defined as F2[t]/(t83+
t7 + t4 + t2 + 1) and y2 + h(x)y = f(x) over F283 ,

h(x) = x2+ 2b770d0d26724d479105f x + 540efb4e1010a0fc69f23,
f(x) = x5+ 2cc2f2131681e8fe80246 x3+ 53b00bad6fbb8f6ea5538 x+ 54f5f3b4f4fc25898ee4.

The order of the Jacobian is:

2× 46768052394588893382517909320120991667183740867853.

The experiment was implemented on an Intel Xeon Processor 2.80GHz using
operation system Linux 2.4 (RedHat). We employed compiler gcc 3.3 and number
theoretic library NTL5.3 with GMP4.0 [NTL]. The precise measurement of the
timing difference of scalar multiplication on PC is difficult due to many other
processes running on the PC, so that we use a CPU clock as the measurement
of timing for the test codes. In this computational environment, the timing ratio
of the inversion by the multiplication is estimated to be I/M = 5.78 from 10
million random samples.

5 Timing Attack on HECC

In this section, we propose a timing attack using degenerate divisors.

5.1 Target of Timing Attack

We explain the target system of the proposed timing attack.
Note that the probability, which a randomly chosen divisor in Jacobian

Jc(F2n) causes an exceptional procedure in the addition formula, is O(1/2n)
[Nag00]. Therefore, the exceptional procedure appears with negligible proba-
bility during the scalar multiplication for a randomly chosen base point. The
attacker has to choose appropriate divisors in order to achieve the timing at-
tack.

The proposed attack is categorized as a chosen ciphertext attack on a public-
key cryptosystem. We assume that the secret key d is fixed during the at-
tack and the base point P can be freely chosen by the attacker. This scenario
has been used for several attacks, namely an exceptional procedure based at-
tack [AT03,Ava03a,Gou03,IT03]. The protocols for which our proposed attack
works are HEC ElGamal-type decryption (e.g. HECIES) and single-pass HEC
Diffie-Hellman.
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5.2 Recovering Secret Scalar

We describe here how to recover the secret key d by observing the whole timing
of the scalar multiplication dD using the exceptional procedures, where D is a
divisor of J = Jc(F2n). The recovering technique follows the algorithm proposed
by Goubin [Gou03] and Izu et al. [IT03]. However, we have to consider where
the exceptional procedure occurs and how to compare this timing with that of
the ordinary case.

Denote by (dm−1dm−2 · · · d1d0)2 the binary representation of d with dm−1 =
1. We assume the scalar multiplication is calculated by the double-and-add-
always method (Algorithm 3). The attacker tries to bring about an exceptional
procedure during the scalar multiplication using the degenerate divisor aD for
the base point D and some integer a. We can easily choose the base point, e.g.,
divisor D = ((a−1) mod #J

c )D̄ for any degenerate divisor D̄, where #J is the
order of Jc(F2n). We calculate the whole time of the scalar multiplication dD
and compare it with that of the scalar multiplication with random base point.

We now describe how to determine the second bit dm−2. First, we determine
the second most significant bit dm−2. If dm−2 = 0, the addition chain generates
the following sequence D, 2D, 3D(dummy), 4D, 5D(dummy), 8D for dm−3 =
0, and D, 2D, 3D(dummy), 4D, 5D for dm−3 = 1. If divisor 4D is degener-
ate, the exceptional procedures ExHarDBL2→1(2D)→ 4D and ExHarADD1+2→2

(4D) → 5D appear. In this case we have additional exceptional procedure
ExHarDBL1→2(4D) → 8D only if dm−3 = 0.

dm−2 = 0 : 2D
HarleyADD
−−−−→ 3D

ExHarDBL2→1

−−−−→ 4D
ExHarADD1+2→2

−−−−→ 5D
ExHarDBL1→2

−−−−→ 8D (dm−3 = 0)

Therefore the timing difference ΔT 0 for dm−2 = 0 is: follows:

ΔT 0 = (HarleyDBL − ExHarDBL2→1) + (HarleyADD − ExHarADD1+2→2)
+1/2(HarleyDBL− ExHarDBL1→2) = 34M.

Similarly, dm−2 = 1, the addition chain generates the following sequence D, 2D,
3D, 6D, 7D or D, 2D, 3D, 6D, 7D(dummy), 12D. If divisor 6D is degenerate, we
have the following exceptional procedures:

dm−2 = 1 : 2D
HarleyADD
−−−−→ 3D

ExHarDBL2→1

−−−−→ 6D
ExHarADD1+2→2

−−−−→ 7D
ExHarDBL1→2

−−−−→ 12D (dm−3 = 0)

Therefore the timing difference ΔT 1 for dm−2 = 1 is as follows:

ΔT 1 = (HarleyDBL − ExHarDBL2→1) + (HarleyADD − ExHarADD1+2→2)
+1/2(HarleyDBL− ExHarDBL1→2) = 34M.
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The timing differences for dmi−2 = 0, 1 are exactly same for this attack. For a 160-
bit HECC, the timing difference is about 0.34% of the whole scalar multiplication
under 1I = 5.8M .

In the above situation, the attacker is able to compute the bit by comparing
the whole computation time of the scalar multiplication for ((4−1) mod #J

c )D̄
or ((6−1) mod #J

c )D̄, where D̄ is any divisor with weight 1.
The lower bits can be recursively recovered using the above method. We ex-

plain how to compute di after knowing the highest bits (dm−1dm−2 · · · di+1). The
attacker chooses D0 =((

∑m−1
j=i dj2j−i)−1 mod #J

c )D̄ or D1 =((
∑m−1

j=i+1dj2j−i)−1

mod#J
c )D̄ as the base point, where D̄ is any divisor with weight 1. The base

point D0, D1 brings about the exceptional procedure if di = 0, 1, respectively.
We have measured the average timings of the scalar multiplication for the

Harley algorithm (Harley), the Harley algorithm with one exceptional procedure
(Harley + ExHarley), and the Harley algorithm with one exceptional procedure
of the Cantor algorithm (Harley + ExCantor) 2. Table 3 shows the results with
50000 random samples.

The arithmetic of HECC was programmed only using the operations of fi-
nite field F283 . The common commands of NTL library were used for both the
exceptional procedure and the ordinary procedure. The timing of the branch con-
dition, which switches the ordinary case to the exceptional cases, is negligible
compared to that of the operations of F283 .

The timing difference using one exceptional procedure ExHarley or ExCantor
is 0.15% or 1.72%, respectively. These timings are comparable to the results in
Section 4 and [KKA+04]. The exceptional procedure of the Cantor algorithm
causes a larger difference than that of the Harley algorithm.

Although there is a timing difference of exceptional cases from the ordinary
case, the difference is quite small. In the next section we explain how to improve
the success probability of determining the secret bit.

5.3 Outline of Experiment

We report an experiment of the timing attack based on the exceptional pro-
cedures in the previous section. We explain our experimental technique, which
distinguishes the timing difference of the exceptional procedures from the ordi-
nary procedure. The test codes calculate scalar multiplication dD for the base

Table 3. Timings of scalar multiplication.

Addition Formula Timing

Harley 13.36 ms
Harley + ExHarley 13.34 ms
Harley + ExCantor 13.59 ms

2 Some implementations employ the Cantor algorithm for exceptional cases because
of many exceptional cases.
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point D and n-bit secret scalar d. We assume that the scalar multiplication is
computed by the double-and-add-always method (Algorithm 3).

This technique of measurement is similar to that used in [DKL+98]. Let T
be the average time of N scalar multiplications with different divisors. Note
that there are enough such divisors for the timing attack. The attacker aims at
determining di, that is the i-th bit of the secret scalar d. The total bits of the
secret key can be recovered by recursively applying this attack from the most
significant bits. Section 5.2 shows how to generate a divisor that bring about the
exceptional procedure with di = 0 or di = 1. We denote by Dex0 or Dex1 these
divisors, respectively. We have the following three different timings:

T rand: the average time with a randomly chosen divisor
T ex0: the average time with divisor Dex0

T ex1: the average time with divisor Dex1

The sample number of different divisors for obtaining T ex0 or T ex1 is N for
each bit di. Timing T rand is measured with N different divisors during the
whole attack. The minimum number N for succeeding in the attack depends on
the computational environment and distribution of divisors, and we show the
minimum N for our setting in the next section.

Then we compute the differences from the random instance, more precisely
ΔT 0 = |T rand − T ex0| and ΔT 1 = |T rand − T ex1|. If di = b holds for b =
0, 1, then ΔT b̄ is nearly zero due to random distribution T exb̄, that is T exb̄ ≈
T rand, where b̄ = 1 − b. Recall that the scalar multiplication bring about an
exceptional procedure with negligible probability for a randomly chosen base
point. Therefore, we can suppose di = b if ΔT b > ΔT b̄ holds for b = 0, 1. We
summarize this as follows:

Algorithm 4 Experiment for Determining di

1. Calculate T rand, T ex0, T ex1

2. Calculate ΔT 0 = |T rand − T ex0| and ΔT 1 = |T rand − T ex1|
3. Return di = b if ΔT b > ΔT b̄ for b = 0, 1

5.4 Analysis of Timing Attack

We analyze the distribution of timings ΔT b for b = 0, 1, and we present the
experimental result of the timing attack.

The distribution of timings ΔT b depends on the distribution of divisors D
appearing in the scalar multiplication dD and the noise arising from the mea-
surement of dD. We can average the deviation by increasing the number of base
points D1, ..., DN used for the experiment. Therefore, we can define the following
distribution, which comprises k iterations of experiments for T rand and T exi.

Definition 2. Let T rand(N) and T exb(N) be the average timing of the scalar
multiplication dDj for j = 1, 2, ..., N with random base point Dj and base point
Dj that brings about the exceptional procedure at target bit db, respectively.
The (N, k)-distribution T b

N,k is the distribution of timings ΔT b = T rand(N) −
T exb(N) for k iterations of the experiment for obtaining T rand(N) and T exb(N),
where b = 0, 1.
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Fig. 1. (50,1000)-distribution, and (500,1000)-distribution.

The mean value of (N, k)-distribution ΔT b can be used for determining the
secret bit b. We can determine it by comparing the mean value of ΔT b with that
of ΔT b̄ for b = 0, 1 as we showed in Algorithm 4.

Figure 1 shows histograms of (N, k)-distribution T b
N,k for different N = 50,

N = 500 with fixed k = 1000. The horizontal axis and vertical axis are timing
(ms) and frequency of timing, respectively. To compare the different types of
(N, k)-distributions, we averaged the timings over N divisors and normalized
the frequency by k. When N increases from 50 to 500, the overlapping of the
two histograms between T 0

N,k and T 1
N,k becomes smaller. The proportion of the

overlapping shows the probability of determining the secret bit. The success
rate of our experiment is defined as the ratio of correct determines to the total
number of experiments (i.e. k). Figure 2 shows the relation between the success
rate for the increasing number N of random divisors with fixed k = 1000. If we
choose N > 500, we achieve almost a 100% success rate.

If k is small, the effect of the noise on the experiment becomes large and the
success rate becomes smaller. For example, we show the distribution of k = 50 in
Fig. 2, which is irregular even for increasing N . However, the choice of k = 1000 is
large enough for eliminating the influence of the noise on our experiment, and N
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is considered to be the number of measurements required for the timing attack.
Consequently, we conclude one bit of the secret scalar can be recovered if the
attacker can measure more than 500 samples (N > 500) with high probability.

In order to reveal all 160 bits of the secret scalar, we recursively performed
the proposed attack from the 2nd most significant bit to the 2nd least significant
bit. The least significant bit could be easily revealed. In this case, we required
500 × 158 = 79, 000 samples. Our experiment did not provide error correction
similar to that used by [DKL+98]. With error-correction implemented, the time
required for recovery would decrease dramatically because fewer samples (for
example, N = 50) would be needed for successful recovery.

6 Summary

We investigated the use of degenerate divisors of hyperelliptic curves in cryp-
tography. The timing of computing addition formulas with degenerate divisors
(the exceptional procedure) is in general different from that of the standard pro-
cedure. We considered the precise timing of the exceptional procedure required
using the Harley algorithm and Cantor algorithm.

We presented two different applications of the exceptional procedures, –
which can be, however, a two-edged sword. For a positive application we pre-
sented an efficient scalar multiplication using degenerate divisors as the base
point. The discrete logarithm problem of the degenerate divisors is as hard as
that of the random divisors due to the random self-reducibility. Our experiment
shows that we can achieve about 20% improvement in speed. For a negative
application, we mounted the degenerate divisors to the timing attack on the
secret scalar. The attack tries to distinguish the timing of the exceptional pro-
cedure from that of the ordinary procedure. About 500 samples of the scalar
multiplication enable us to break one bit of the secret key.
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Diploma Thesis, Rühr-Universität Bochum, 2002.
[PWG+03] J. Pelzl, T. Wollinger, J. Guajardo and C. Paar, “Hyperelliptic Curve Cryp-

tosystems: Closing the Performance Gap to Elliptic Curves,” CHES 2003, LNCS
2779, Springer-Verlag, pp.351-365, 2003.

[SMC+02] T. Sugizaki, K. Matsuo, J. Chao, and S. Tsujii, “An Extension of Harley
Addition Algorithm for Hyperelliptic Curves over Finite Fields of Characteristic
Two,” Technical Report ISEC2002-9, IEICE Japan, pp.49-56, 2002.

[Sch00] W. Schindler, “A Timing Attack against RSA with the Chinese Remainder
Theorem,” CHES 2000, LNCS 1965, pp.109-124, 2000.

[Sch02] W. Schindler, “A Combined Timing and Power Attack,” PKC 2002, LNCS
2274, pp.263-279, 2002.

[SKQ01] W. Schindler, F. Koeune, J.-J. Quisquater, “Improving Divide and Conquer
Attacks against Cryptosystems by Better Error Detection/Correction Strategies,”
Cryptography and Coding, 8th IMA Int. Conf., LNCS 2260, pp.245-267, 2001.



Hyperelliptic Curve Coprocessors on a FPGA

HoWon Kim1, Thomas Wollinger1, YongJe Choi2,
KyoIl Chung2, and Christof Paar1

1 Department of Electrical Engineering and Information Sciences,
Ruhr-Universität Bochum, Germany

{khw,wollinger,cpaar}@crypto.rub.de
2 Electronics and Telecommunications Research Institute, South Korea

{choiyj,kyoil}@etri.re.kr

Abstract. Cryptographic algorithms are used in a large variety of dif-
ferent applications to ensure security services. It is, thus, very interest-
ing to investigate various implementation platforms. Hyperelliptic curve
schemes are cryptographic primitives to which a lot of attention was
recently given due to the short operand size compared to other algo-
rithms. They are specifically interesting for special-purpose hardware.
This paper provides a comprehensive investigation of high-efficient HEC
architectures.
We propose a genus-2 hyperelliptic curve cryptographic coprocessor using
affine coordinates. We implemented a special class of hyperelliptic curves,
namely using the parameter h(x) = x and f = x5 + f1x + f0 and the
base field GF(289). In addition, we only consider the most frequent case
in our implementation and assume that the other cases are handled, e.g.
by the protocol.
We provide three different implementations ranging from high speed to
moderate area. Hence, we provide a solution for a variety of applications.
Our high performance HECC coprocessor is 78.5% faster than the best
previous implementation and our low area implementation utilizes only
22.7% of the area that the smallest published design uses. Taking into
account both area and latency, our coprocessor is an order of magnitude
more efficient than previous implementations. We hope that the work
at hand provides a step towards introducing HEC systems in practical
applications.

Keywords: Hyperelliptic curve coprocessor, high speed, low area, re-
configurable hardware, FPGA, cryptographical applications, affine coor-
dinates.

1 Introduction

Cryptographic primitives are used in a variety of different applications. It is ob-
vious that the condition for a practical implementation is very much application
driven. Imagine a scenario, where a number of PDAs communicate with a server.
On the server side high data throughput is a necessity because the server has to
encrypt the data traffic of all personal devices. Area and power consumption is
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often not critical on the server. However, moderate speed is acceptable on the
PDAs. The battery life and size of the device demand small area and low power.
In short, both systems have totally different requirements in the implementation
of the cryptographic primitive.

In the mid 1980s, a variant of the Diffie-Hellman key exchange was published
based on the difficulty of the DL problem in the group of points of an elliptic
curve (EC) over a finite field [12,18]. In 1988, Koblitz suggested for the first time
the generalization of EC to curves of higher genus for cryptographic use, namely
hyperelliptic curves [13]. The operand size of a hyperelliptic curve cryptosystem
(HECC) is even shorter compared to elliptic curve cryptosystem (ECC). This
fact is advantageous for HECC on any platform.

In recent years, there has been a major effort in improving the group oper-
ations and in implementing HECC on different processors (see [26] for a sum-
mary). Through the contribution from different industry and research groups,
HECC was able to perform in the same range as ECC and even in some special
cases outperform ECC. However, there are only a few implementations of this
cryptographic primitive on hardware and all of them only target high encryption
speed.

Our Main Contributions

Previously some contributions also implemented HECC on FPGAs [2,4,5,7,25].
However, we present for the first time an FPGA implementation considering
affine explicit HECC formulae.

Given the fact that implementations of certain cryptosystems always are ap-
plication dependent, we provide three different designs of the HECC coprocessor
ranging from high performance to moderate area. We introduce in this work (i)
the fastest HECC coprocessor up to date and (ii) the HECC implementation on
FPGA with the lowest area.

The HECC coprocessor designs were evaluated by considering both the hard-
ware requirements and the time constraints of the cryptographic application.
Our HECC coprocessor is 78.5% faster than the best previous implementation
and our low area implementation utilizes only 22.7% of the area of the smallest
design published. Taking into account area and speed by using the area-time
product our coprocessor is between a factor of 12 and 125 better than previous
publications. Hence, we are able to provide designs that achieve the encryption
using HECC faster utilizing less area. Through this improvement HECC is now
approaching the performance range of ECC FPGA implementations.

The remainder of the paper is organized as follows. Section 2 summarizes
the previous work of FPGA implementation of HECC. Section 3 gives a brief
overview of the mathematical background. Section 4 presents the HECC copro-
cessor and in Section 5 we outline our methodology and the different design
options. Our results and the analysis of them is given in Section 6. Finally, we
end this contribution with the some conclusions.
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2 Previous Work

This section gives a short overview of the hardware implementations targeting
HECC. The first work discussing hardware architectures for the implementation
of HECC appeared in [25]. The authors describe efficient architectures to im-
plement the necessary field operations and polynomial arithmetic in hardware.
All of the presented architectures are speed and area optimized. In [25], they
also estimated that for a hypothetical clock frequency of 20 MHz, the scalar
multiplication of HECC would take 21.4ms using the NAF method.

In [2] the authors presented the first complete hardware implementation of a
hyperelliptic curve coprocessor. This implementation targets a genus-2 HEC over
F2113 . The target platform is a Xilinx Virtex II FPGA. Point addition and point
doubling with a clock frequency of 45MHz took 105μs and 90μs, respectively.
The scalar multiplication could be computed in 20.2ms.

In [4, 5] the authors presented extended results of [2]. They implemented a
HECC coprocessor using a variety of base fields, ranging from F283 to F2163 ,
as well as two different multipliers (digit size D=1 and D=4 bits). The scalar
multiplication took between 9ms and 40ms and used between 22,000 and 119,000
slices. From the implementation numbers given in the paper we consider that the
design options using D=4 multiplier have unreasonable hardware requirements.

Note that publications mentioned so far adopt the Cantor algorithm to com-
pute group operations [3]. Today, there exist more efficient algorithms to compute
group addition and group doubling.

The first approach to implement a hyperelliptic curve cryptosystem in hard-
ware using explicit formulae is presented in [7]. The authors used the inversion-
free group operations for HECC introduced in [15]. Using the F2113 and the NAF
method for the scalar multiplication, they were able to reach a speed of 2.03ms.
Note that the paper at hand uses, in contrary to [7], the affine version of the
explicit formulae. We are not aware of any hardware implementation using this
kind of formulae.

3 Mathematical Background

In this section we introduce the theory of HECC, restricting attention to the
relevant material and refer the interested reader to [14].

3.1 Definition of HECC

Let F be a finite field and let F be the algebraic closure of F. A hyperelliptic
curve C of genus g ≥ 1 over F is the set of the solutions (x, y) ∈ F × F to the
following equation:

C : y2 + h(x)y = f(x)

The polynomial h(x) ∈ F[x] is of degree at most g and f(x) ∈ F[x] is a monic
polynomial of degree 2g +1. For odd characteristic it suffices to let h(x) = 0 and
to have f(x) square free. Such a curve C is said to be non-singular if there does
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not exist any pair (x, y) ∈ F× F satisfying the equation of the curve C and the
two partial differential equations 2y + h(x) = 0 and h′(x)y − f ′(x) = 0.

A divisor D is defined as D =
∑

miPi, where the Pi are points on the curve
C and the integers mi are the weights. Additionally, they have to fulfill the
condition that Dσ =

∑
miP

σ
i is equal to D for all the automorphisms σ of F

over F (see [17] for details).
Divisors admit a reduced form. A reduced divisor can be represented as a pair

of polynomials u(x), v(x) [20]. Reduced divisors can be added (group addition),
e.g. D3 = D1 +D2, or doubled (group doubling), e.g. D2 = 2D1 = D1 +D1, and
hence the scalar multiplication kD = D + · · ·+ D can be performed. The scalar
multiplication kD is the basic operation of HECC, that we want to implement
with a coprocessor.

3.2 Group Operations

The formulae given for the group operations of HEC by Cantor [3] can be rewrit-
ten in explicit form, thus resulting in more efficient arithmetic. The explicit for-
mulae were first presented in [9]. Starting with this finding, a considerable effort
by different research groups has been put into finding more efficient operations.
A treatment about the historic improvements of the HECC group operations
can be found in [26].

In this work, we target our HECC coprocessor for genus-2 curves using under-
lying fields of characteristic two. We used the current fastest explicit formulae,
as presented in [22], where the authors introduced a group doubling requiring a
single field inversion, 9 field multiplications and 6 field squarings. Group addi-
tion can be computed with 1 field inversion, 21 field multiplications and 3 field
squarings [16]. These explicit formulae as given in the references cover only the
most frequent case that happens in almost all cases. In addition, special cases of
curve parameters are used to decrease the complexity of the group operations.

3.3 Security of HECC

It is widely accepted that for most cryptographic applications based on EC or
low genus HEC, the necessary group is of order at least ≈ 2160. Thus, for HECC
over Fq, we must have at least g · log2 q ≈ 160. In particular, we will need a
field order |Fq| ≈ 280 for genus-2 curves. Even the very recent attack found by
Thériault [24] shows no progress in attacks against genus-2 HEC.

In addition, one should consider the Weil decent attack methodology [8] and
especially the GHS Weil decent attack [10]. Consider E to be a non-supersingular
elliptic curve defined over a field K = F2m , and m is composite. The idea of the
attack is to reduce the ECDLP in E(F2m) to the DLP in the jacobian variety
of a curve of larger genus defined over a proper subfield k = Fl of K. The curve
parameters selected (h(x) = x and f = x5 +f1x+f0) and the chosen underlying
field GF(289) have to our knowledge no security implications. In addition, the
approximate group order of 2178 are well suited for medium term security.
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4 HECC Coprocessor

The coprocessor has to compute the scalar multiplication kD for the HECC.
Efficient algorithms are needed to implement the group operations as well as
the field arithmetic. This work proposes three different processor architectures
that are also well suited for implementation on Field Programmable Gate Ar-
rays (FPGAs). The implementations target a special class of hyperelliptic curves
(h(x) = x, f = x5 + f1x + f0) and a fixed underlying field GF(289). We imple-
mented only the most frequent case and assume for a practical application, that
the protocol will handle the other case, e.g. by restarting the setup phase of the
protocol.

The HEC coprocessor consists of three main components: main control unit
(MC), arithmetic unit (AU), and register file or memory (RF), see Figure 1. MC
is the main control unit of the coprocessor. It computes the scalar multiplication
kD for HECC and interacts with the host system as well as with the other
components. It generates control signals for RF, interconnection block, and AU.
The interconnection block, which is mainly composed of multiplexers, takes care
of the data exchange between the RF and the AU. The AU performs the field
and group operations. In the following, we are going to describe the individual
components in more detail.

4.1 Field Operation Units

The AU in the HECC coprocessor has field operation units for addition, squaring,
multiplication and inversion over F289 . In existing literature one can find a variety
of ways to implement the field operations. We provide a short description of the
implementation and give references pointing to more detailed information.

Field Adder: The addition of two elements requires the modulo 2 operation
of the coefficients of the field elements. Hence, we use 89 exclusive OR gates to
add two field elements in one clock cycle.

Field Squarer: The squaring of a field element A =
∑m−1

i=0 aix
i is ruled by

the following equation: A2 ≡
∑m−1

i=0 aix
2i mod f(x). It is implemented with

Fig. 1. Architecture of the HECC coprocessor.
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a combinatorial logic and specialized with an underlying minimal polynomial
f(x). Squaring can be performed within one clock cycle and further details can
be found in [21].

Field Inversion: The inversion was implemented using the Modified Almost
Inverse Algorithm (MAIA) [11] and rewritten in Algorithm 1. In addition, we in-
creased the performance by using the loop unfolding techniques described in [27].
Detailed algorithm is shown in Algorithm 2. These techniques allow to execute
the Step 2 to 5 of Algorithm 1 in nearly one clock cycle. In order to do so, we
a) unrolled the loop (Step 2) and b) merged Step 5 in Step 2. To realize the
improvement a) we had to replicate and expand the conditional statement for
all cases. The replication number of the loop body was decided by considering
the tradeoff between the hardware complexity and performance. In our design,
we have unrolled four loops in MAIA algorithm and we get about two times per-
formance gain in inversion operations with sacrificing the hardware complexity.

The field inversion can be performed in an average time of 1.3μs (see Table 1).
The input data that was used to measure the execution time had an Hamming
weight of n/2, where n is the bit size of the input data. The reason being the
performance of the inversion varies with the input data.

Algorithm 1. Modified Almost Inverse Algorithm for inversion in F2m

INPUT : a ∈ F2m , a �= 0.
OUTPUT : a−1 mod f(x)

1. b ← 1, c ← 0, u ← a, v ← f.
2. While x divides u do:

2.1 u ← u/x
2.2 If x divides b then b ← b/x; else b ← (b + f)/x.

3. If u = 1 then return(b).
4. If deg u < deg v then: u ↔ v, b ↔ c.
5. u ← u + v, b ← b + c.
6. Goto step 2.

Field Multiplication: For the field multiplication we use the digit multiplier
introduced in [23]. This kind of multiplier allows a trade-off between speed,
area and power consumption. This can be achieved by a varying number of
multiplicand coefficients that are processed in parallel, denoted as digit-size D.
Given D, we denote by d = �m/D� the total number of digits in a polynomial
of degree m− 1. Hence, C ≡ AB ≡ A

∑d−1
i=0 Bix

Di mod f(x).
We investigated the performance of the field multiplication in more depth

because it is a crucial field operation in the HECC. The digit multipliers come
in two flavors: Least Significant Digit (LSD) first and Most Significant Digit
(MSD) first multiplier. We have implemented LSD first digit serial multiplier
for this HECC design because it is known that LSD first multiplier has better
performance than MSD first digit serial multiplier [23]. Table 1 shows the latency
and the area requirement of the digit serial multiplier with various digit sizes.
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Algorithm 2. Modified Almost Inverse Algorithm with Loop Unfolding

INPUT : a ∈ F2m , a �= 0.
OUTPUT : a−1 mod f(x)

1. b ← 1, c ← 0, u ← a, v ← f, deg u ← 0, deg v ← m
2. Find the degree of u and save it to deg u
3. While deg u �= 0 do:

3.1 If u[0] = 0 then let b′ = (b + b[0] ∗ f)/x, b′′ = (b′ + b′[0] ∗ f)/x, b′′′ = (b′′ + b′′[0] ∗ f)/x)
3.1.1 If u[3 : 0] = (0000)2 then u ← u/x4, deg u ← deg u − 4,

b ← ((((b + b[0] ∗ f)/x + b′[0] ∗ f)/x + b′′[0] ∗ f)/x + b′′′[0] ∗ f)/x
3.1.2 If u[2 : 0] = (000)2 then u ← u/x3, deg u ← deg u − 3,

b ← (((b + b[0] ∗ f)/x + b′[0] ∗ f)/x + b′′[0] ∗ f)/x
3.1.3 If u[1 : 0] = (00)2 then u ← u/x2, deg u ← deg u − 2, b ← ((b + b[0] ∗ f)/x + b′[0] ∗ f)/x
3.1.4 If u[0] = (0)2 then u ← u/x, deg u ← deg u − 1, b ← (b + b[0] ∗ f)/x

3.2 else (u[0] �= 0 : let uv = u + v, bc = b + c)
Let bc′ = (bc + bc[0] ∗ f)/x, bc′′ = (bc′ + bc′[0] ∗ f)/x, bc′′′ = (bc′′ + bc′′[0] ∗ f)/x

3.2.1 If uv[3 : 0] = (0000)2 then u ← uv/x4,
b ← ((((bc + bc[0] ∗ f)/x + bc′[0] ∗ f)/x + bc′′[0] ∗ f)/x
If deg u < deg v then v ← u, c ← b, deg u ← deg v − 4, deg v ← deg uelse deg u ← deg u − 4

3.2.2 else If uv[2 : 0] = (000)2 then u ← uv/x3,
b ← (((bc + bc[0] ∗ f)/x + bc′[0] ∗ f)/x + bc′′[0] ∗ f)/x
If deg u < deg v then v ← u, c ← b, deg u ← deg v − 3, deg v ← deg u else deg u ← deg u − 3

3.2.3 else If uv[1 : 0] = (00)2 then u ← uv/x2, b ← ((bc + bc[0] ∗ f)/x + bc′[0] ∗ f)/x
If deg u < deg v then v ← u, c ← b, deg u ← deg v − 2, deg v ← deg u else deg u ← deg u − 2

3.2.4 else If uv[0] = (0)2 then u ← uv/x, b ← (bc + bc[0] ∗ f)/x
If deg u < deg v then v ← u, c ← b, deg u ← deg v − 1, deg v ← deg u else deg u ← deg u − 1

4. return(b).

Table 1. Performance of multiplication and inversion logic (FPGA Xilinx Virtex II
XC2V4000 ff1517-6, F289).

Type Digit Size [bits] slices Frequency [MHz] Clock cycles Time [μs]

D=1 145 97.5 89 0.913
D=4 239 106.8 23 0.215

Digit Serial D=8 414 110.1 12 0.109
Multiplier D=16 645 87.4 6 0.069

(LSD) D=32 1,189 71.6 3 0.042
D=45 1,616 63.7 2 0.031
D=89 3,205 52.2 1 0.019

MAIA (4 loops unfolded) - 733 74.6 97 1.300

One would expect the frequency of the multipliers to decrease with higher
digit size. However, examining Table 1 one notices the lower frequency for D=1
and D=4 multipliers compared to D=8. Careful analysis shows that the critical
path of the D=1 and 4 multipliers are dominated by the control logic, more
specifically from the comparator logic and additional logic (such as multiplexers).
For all the other multipliers the critical path is conditioned by the data path. The
data path includes the parallel multiplication, the accumulation of the partial
results and the reduction (for more detail see [23]).

The choice of the ideal multiplier for our HECC coprocessor largely depends
on frequency of the total design and secondly, on the latency of the multiplier.
The frequency of the coprocessor is limited by the interconnect network and does
not exceed 63 MHz (see Table 3).
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Hence, the multipliers using digit size D=32 are good choice. The reason
being it can be clocked with a high enough frequency and computes the mul-
tiplication in only three cycles. Furthermore, this performance is achieved by
moderate area usage.

4.2 Arithmetic Unit

Figure 2 shows the arithmetic unit (AU) that performs the group addition and
group doubling operations. The AU consists of the field operation units and
the group operation logic. The control logic is in charge of scheduling the right
sequence of operations to perform the HEC group operations. Necessarily, the
control unit has to interact with the main control unit (MC) and the register
files (RF). In addition, we had to provide internal control logic for the multiplier
and inversion logic.

Field addition and field squaring are the least expensive operations and,
therefore, we decided to integrate them into the data path between RF and the
multipliers. However, we still can compute the operation without consecutive
multiplication by setting the right multiplexer options.

Fig. 2. Arithmetic Unit of the HECC coprocessor.

4.3 Interconnect Network

The interconnect network, consisting of a multiplexer, handles the data trans-
fer between the RF and AU. Note that for our high performance design (see
Section 5), we included the capability to load the input data in parallel. This
results in the possibility to start two multipliers and the inversion logic at the
same time.

5 Design Methodology for the HECC Coprocessor

In this section, we will briefly describe our design methodology that resulted
in the HECC coprocessor. We tried for all presented design options to reach
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the best possible performance and at the same time to reduce overall hardware
complexity. In order to do so we examined the parallelism within the group
operations, minimized the number of registers, and reduced the complexity of
the interconnect network.

Parallel Architecture for the Group Operations: We used the Data De-
pendence Graph (DDG) to design the architecture for computing the group
operations. We found that the multiplication and the inversion operations are
the dominant components and, therefore, crucial for the overall performance.
Hence, we choose that the nodes of the DDG represent the multiplications and
the inversions, whereas the addition and squaring are an edge of the DDG.

We can describe the DDG as G(F ) = (V, E), where V is the set of multipli-
cation and inversion operations, F is the HECC explicit formulae, and E is the
data flow between multiplication, inversion, and registers.

Our analysis using the DDG resulted in the choice of using two parallel mul-
tipliers for the genus-2 HECC coprocessor. This choice considered the hardware
complexity as well as the performance. The utilization rate of the two multipliers
for group addition and group doubling is 91% and 50%, respectively. Therefore,
adding additional multipliers would not provide any advantages considering the
increasing hardware complexity. Hence, we used two multipliers and speed up
the performance of the HECC coprocessor by choosing a high digit size (D=32).

Previously, there has been two contributions studying the parallelism of the
genus-2 HECC group operations [1, 19]. In [19], the authors develop a general
methodology for obtaining parallel algorithm for the HECC. However, this work
only focused on theoretical aspects on the parallelism of the HECC. Furthermore,
they did not consider the register allocation and interconnect network complexity
problems, which are important factors in practical implementations. In [1], the
authors presented an architecture that is suited for real implementations by
simulating the HECC coprocessor. However, this contribution uses a different
design methodology, resulting in slightly different results. One main difference
between our and their design methodology is that they did not include the
addition and squaring into the data path.

Minimizing the Number of Registers: We have designed the HECC copro-
cessor with an effort to minimize the number of registers. We used eight 89-bit
registers to store two divisor values which are updated during the computation
of the group operations with the output result. In addition, we needed some
extra registers to store intermediate values. We found the optimum number of
extra registers by efficiently reusing these resources. This was manually done
with the help of register allocation tables.

Reduction of the Complexity of the Interconnect Network: After we
found the minimum number of registers, we tried to reduce the complexity of
the interconnect network. We did this by looking at the inputs and outputs of
the different units (field operations and RF) involved in the computation. The
minimum complexity would be achieved by a) always storing a designated output
into the same register and b) loading a certain input value every time from the
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same register. Looking at the complexity of the HECC group operations, it is
obvious that there will not be a fixed register for loading inputs or storing the
output of one unit. However, by trying to use this method we were able to reduce
the size of the interconnection multiplexers.

5.1 Various Design Options for the HECC Coprocessor

We will now introduce the three types for HECC coprocessors implemented in
this contribution. We have designed Type 1 for high performance and Type 2
and 3 for lower hardware complexity with reasonable performance. The charac-
teristics of the various types of HECC coprocessors are summarized in Table 2.

At this point we would like to stress, that the two main factors limiting the
performance of the HEC coprocessor are the AU and the interconnect network
(see discussion in previous sections).

Type 1 Design: High Performance: Our Type 1 design aims for a high
performance implementation and is shown in Figure 3(a). This design has two
independent arithmetic units; one for group addition and one for group dou-
bling. The independency of the two group operations results from separate field
operation units, registers, interconnect networks, and control units. Thus, we
can compute the group operations in parallel by using a modified version of the
double-and-add scalar multiplication. In the case of group addition we used two
multipliers and one inversion logic, whereas for group doubling we provided only
one multiplier and one inversion logic.

Fig. 3. Various design options for the HECC coprocessor.

Type 2 Design: Resource Sharing: Our Type 2 HECC coprocessor provides
only one AU shared by the group addition and group doubling (see Figure 3(b)).
Hence, the two group operations share the field arithmetic unit, the register file,
the interconnect network, and the control logic. Another difference is that a
more complex interconnect network is needed to handle the computation. These
differences result in a slower operating frequency, however, the total hardware
complexity is smaller compared to Type 1.



370 HoWon Kim et al.

Type 3 Design: Low Area: Type 3 HECC coprocessor also uses, like in the
case of the Type 2 design, shared resources (see Figure 3(b)). The difference
between Type 2 and Type 3 design is the usage of memory for storing the
intermediate data needed during the computation of the group operations and
the scalar multiplication. When we use memory instead of registers, the decoding
logic for reading (writing) data from (to) the RF unit is intrinsically implemented
inside the memory.

We have used distributed memory with dual ports (DIST MEM V6), which is
internally provided by the Xilinx FPGAs. We have chosen the smallest memory
block available, namely of the size 1,536 bits, however we are currently using
only 1,246 bits to store 14 field elements.

Trading memory versus registers, results in higher frequency and smaller area,
however, there are two disadvantages: a) we use specific memory which will be
costly when converting the system to an ASIC and b) the number of clock cycles
for the overall computation increases, because of the expensive data movement
from and to the memory. The latter disadvantage was partially removed by
applying pipelining technique to the HECC coprocessor. For example, one can
move data to or from the memory while performing a field multiplication.

6 Results and Analysis

In this section we present our implementation results using the stated method-
ology above. In the first part, we present our throughput results on the different
designs. In the second part, we put our results in perspective to previous pub-
lished ECC and HECC implementations.

6.1 Results

We implemented the HECC coprocessor using the formulae for the group op-
erations [16, 22]. The coprocessor computes the most frequent case using the
suggested special curve parameter and the fixed underlying field GF(289). It
was modeled using VHDL language and then implemented with a Xilinx Virtex
II FPGA (XC2V4000ff1517-6). The VHDL code was synthesized using Synplic-
ity’s Synplify Pro 7.3.1 and Xilinx Foundation 5.2.03i to implement the modeled

Table 2. Architectural characteristics of the different HECC coprocessor types.

logic interconnection scalar mult. Storage for RF

Type 1 addition: 2 MUL, 1 INV Multiplexers Right to Left 13 registers
doubling: 1 MUL, 1 INV (parallel) 10 registers

Type 2 2 MUL, 1 INV Multiplexers Left to Right 14 registers
(shared)

Type 3 2 MUL, 1 INV Multiplexers Left to Right Memory
(shared) BUS (1,536 bits)
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HECC coprocessor onto the target FPGA. Our HECC coprocessor used between
43% and 83% of the slices available in the FPGA.

Table 3 shows the area and time requirements for the three different design
options. Type 1 corresponds to our high performance implementation. We were
able to compute the scalar multiplication in 436μs, which is about 78.5% faster
than the best known implementation presented in [7]. The area requirements
decrease almost 50% changing from Type 1 to Type 3. Hence, our Type 3 de-
sign utilizes 22.7% of the area that the smallest design described in [7]. Note,
that the results presented in [7], present the best previous results in terms of
area and performance. However the authors used a different coordinate system,
coprocessor architecture, group order, and explicit formulae.

Table 3. Performance of HECC coprocessors at the level of scalar multiplication (Xil-
inx FPGA XC2V4000 ff1517-6, group order: 2178.

Size [slices] Frequency [MHz] Clock cycles Time [μs]

Type 1 9,950 4,437 FFs 62.9 27,410 436
16,459 LUTs

Type 2 7,096 2,702 FFs 50.1 39,630 791
13,276 LUTs

Type 3 4,995 2,178 FFs 50.5 51,550 1,020
8,451 LUTs

6.2 Analysis

Many publications evaluating the performance of cryptographic implementations
compare only the throughput of the implementation. In our opinion, one should
also consider the amount of hardware resources consumed to achieve the previ-
ously mentioned throughput, for example, by using the area-time (AT) product.
Therefore, the optimal implementation will achieve the highest throughput in
the least amount of area and, thus, the lowest area-time product. At this point,
we must caution the reader against using the area-time product to compare im-
plementations on different FPGA devices. This is because even within the same
family one will get different timing results as a function of available logic and
routing resources.

In order to be able to provide a fair comparison between our work and the
once previously presented, we did the place and routing for the HECC copro-
cessor with a target FPGA, Xilinx Virtex II FPGA (XC2V4000ff1517-6). In the
case of XC2V4000, our designs used between 21% and 43% of the available slices.
Table 4 shows all HECC hardware numbers and the two best known FPGA im-
plementation of ECC. Note that we did not calculate the area-time product for
the two ECC implementations, because in [21], the authors used a different type
of FPGA, namely the Xilinx FPGA XCV400E.

Analyzing the AT product numbers of our designs, we noticed that they
are fairly similar. Thus, considering different application scenarios, e.g. high
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Table 4. Comparison of ECC and HECC implementation on FPGA.

group order digit size slices f [MHz] Time [μs] AT

genus-2 HECC

Clancy [5] 2166 D=1 22,000 - 10,000 50.74
D=4 60,000 - 9,000 124.54

Elias et al. [7] 2226 D=1 21,550 45.6 7,390 36.73
D=4 25,271 45.3 2,030 11.83

our work
Type 1 2178 9,950 62.9 436 1.00
Type 2 D=32 7,096 50.1 791 1.30
Type 3 4,995 50.5 1,020 1.18

ECC

Orlando et al. [21] 2167 D=16 1,501 76.7 210 -

Gura et al. [6] 2163 D=64 11,845 66.4 143 0.4

speed or moderate area, we are able to provide an adequate solution. Comparing
our results to the previously published, one realizes that our designs are an
order of magnitude better. Our implementations perform between a factor of
12 and 125 better than previous implementations. Note that the authors in [7]
used a different underlying field and, therefore, the factor will be smaller when
changing the field. Considering our HECC coprocessors we are now approaching
the performance range of ECC FPGA implementations.

The reasons for our improvements are manifold. One of the main reasons is
the effort that we put into exploring the parallelism of the HECC in order to
achieve the best utilization of the arithmetic units. In addition, we applied vari-
ous implementation techniques such as loop unfolding on inversion logic, pipelin-
ing on field operations and data movements between registers, minimization of
hardware complexity in interconnect network and register usage, to advance the
speed of the encryption and to lower the area complexity. Furthermore, we used
affine coordinates and the most recent and therefore most efficient explicit for-
mulae available. The group operation using affine coordinates are not as complex
as the one based on projective coordinates, resulting in a smaller interconnect
network.

7 Conclusions

In this paper we have implemented three different designs of a HECC coproces-
sor, ranging from the high performance to moderate area designs. The choice
of the parameters of our efficient implementation is as follows: underlying field
GF(289), curve parameters h(x) = x and f = x5 + f1x + f0, and we used ex-
plicit formulae based on affine coordinates [16,22]. Moreover, the implementation
supports only the most frequent case.

In the case of high performance HECC coprocessor we computed the group
operations in parallel and could achieve almost 78.5% speed up to the best
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timings published. In the case of our low area design we presented a solution for
constrained environments. We were able to decrease the area utilization by more
than 77.3% compared to the smallest HECC coprocessor published. Considering
the area and time requirements for our HECC coprocessors, we are over a factor
of 12 better than previous hardware implementations. To achieve these results we
parallelized the group operations, minimized the complexity of the interconnect
network, and decreased the number of registers.

We provided a milestone by approaching the performance of ECC coproces-
sors with our HECC implementations. We show that genus-2 HECC coprocessors
are potentially well suited for FPGA implementation, because of a) the small
field size which allows highly parallel arithmetic units and b) the parallelism in
the explicit formulae computing the group operations.
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Abstract. Technical applications for various uses have been proposed
in communication technology in recent years. Although especially the
Internet and radio communications are used daily it is known that eaves-
dropping is easy and the related problem has occurred mostly, especially
privacy. In this paper, we introduce Pre-Agreed Session ID (PAS) and
formalize a key-exchange protocol using it. PAS is a identification which
is a disposable unique value used for every session to protect identity from
the attacker. The security notion of identity concealment is formulized in
this paper. Moreover, we propose a secure key-exchange protocol using
PAS under the cryptographic primitives. Furthermore, we argue about
the problems which arise when PAS is introduced.

Keywords: Diffie-Hellman based key exchange protocol, Identity con-
cealment, Pre-shared key model, Pre-Agreed Session ID.

1 Introduction

Key-exchange protocols are procedures which enable two parties that commu-
nicate over open network (e.g., the Internet) to securely share a common short-
term key. To design secure key-exchange protocols is difficult even if completely
secure cryptographic primitives exist. The aim of this paper is to construct a
formal security model for key-exchange and present a secure protocol (from the
definition of our model) under some well known cryptographic primitives.

One of the most important tasks in the provable security area is the design
of a security model. Many cryptographers has been discussing, and a number of
papers has been presented in this area [2, 3, 12, 1]. In this paper, we especially
focus on two papers [2, 3] related to the problem of identity concealment. Identity
concealment is the hottest topic from the view of practical applications because
of the recently rapid development of mobile network such as mobile phone, RFID,
wireless LAN, and so on [9, 10, 8].

Key-exchange protocol can be divided into two types from the possible avail-
ability of the peer identity: one is pre-specified peer and the other is post-specified
peer [3]. In the pre-specified peer setting, the peer identities are assumed to be
specified and given at the onset of a session activation. Then, the task of the
protocol is to guarantee that the party that you are talking to is certainly the

C.H. Lim and M. Yung (Eds.): WISA 2004, LNCS 3325, pp. 375–387, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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pre-specified party. Unlike this, each party learns the peer’s identity during the
protocol in the post-specified peer setting. A secure protocol in this setting en-
sures that the learned identity is authentic. Hence, post-specified peer is more
general setting than pre-specified one.

The protocol proposed in [3] is a signature-based key exchange and is proved
to be secure under the post-specified setting. However, it has two problems: one
issue is that it cannot hide an identity of either an initiator or a responder of
the protocol from active attacker. The other one is that a system using this
protocol can be fragile against denial of service (DoS). DoS attack is the attack
method which blocks the service currently offered by the server and causes the
remarkable fall of the performance of service. This attack is also an important
problem and discussed widely [5, 11].

To solve identity concealment problem, we introduce a notion “Pre-Agreed
Session-ID” (PAS for short), which is a unique session identifier determined and
agreed between each peer before activation of the session. Session-id is used in
[2, 3] to uniquely name sessions, and assumed to be unique among all the session
id. Similarly, since PAS is unique and agreed privately between each pair before
the session, a legitimate party can specify the party who requests a response by
checking the corresponding PAS. On the other hand, an attacker cannot guess
the peer identities because he/she does not know the relation between PAS and
identities. As a direct result of this, by using PAS as party’s identity, identity
concealment can be provided even if an active attacker exists. Moreover, this
property can also result in improving the resistance against DoS attack. We
argue it later.

To use PAS for identity concealment, we design a protocol based on pre-
shaerd key model under pre-specified setting. This is the reason why the choice
of PAS for intended party needs to specify the party before the activation of
the protocol (we generally assumed that each party has plural PAS for several
parties). As mentioned above, post-specified setting is more general than pre-
specified setting. However, post-specified setting based on pre-shared key model
is a practical and common case. That is, in most of protocols using pre-shared
key, a session is started when the initiator has recognized the partner.

Paper’s Organization. In section 2, we introduce our security model based
on the model of [2]. In section 3, we present our protocol (called PAS protocol)
which is secure under our definitions. In section 4, we present the formal proof
of the proposed protocol in the model introduced in section 2. In section 5,
we discuss some problems and properties related to our protocol. Finally, we
conclude this paper in section 6.

2 Security Model

Here, we present our model for key-exchange protocols. This model is based on
the model of [2], but modified to include the notion of PAS and users’ privacy.
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2.1 The SK-ID-Security Definition

Each activation of the protocol at a party instantiates a run of the protocol and
produces outgoing messages and processes incoming messages. In key-exchange
protocol, a session is intended to agree on a session key with one other party.
Sessions can run concurrently and incoming messages are directed to its cor-
responding session via a session identifier. The activation of m-th session at a
party Pi has three input parameters (Pi, PASm

ij , Pj): the local party at which the
session is activated, the pre-agreed session-id, and the identity of the intended
peer to the session. The output of the session at Pi is (Pi, Pj , PASm+1

ij , the ses-
sion key). Each party has additional state, such as a list of long-term pre-shared
keys, which is accessed during different sessions.

The attacker is a (probabilistic) polynomial-time machine with full control
of the communication lines between parties and free to intercept, delay, drop,
inject, or change all messaages sent over these lines. The channel is broadcast-
type: all messages can be sent to a pool of messages, to a local broadcast network,
to a physical or logical address, etc. This model does not make any assumption
on who will eventually get a message, how many times, and when (these are
all actions decided by the attacker). Also, there is no assumption on the logical
connection between the address where a message is delivered and the identity
behind that address. The attacker knows all the pairs that prepare a pre-shared
key.

In addition, the attacker can have access to secret information via session
exposure attacks of four types: session-state reveal, session-key query, party cor-
ruption, and identity reveal. The first type of attack is directed at a session while
still incomplete, and its result is that the attacker learns the session state for
that particular session (which does not include long-term secret). The second
one is directed at a completed session, and its result is that the attacker learns
the corresponding session-key. Party corruption means that the attacker learns
all information in the memory of the party (including session states, session-key,
long-term secrets). Finally, identity reveal means that the attacker learns the
parties’ identities that activate the session.

Sessions can be expired like the model of [2, 3]. From the time a session is
expired, the attacker is not allowed to perform a session-key query or a state-
reveal attack against the session, but is allowed to corrupt the party that holds
the session.

For defining the security of a key-exchange protocol, we follow the indistin-
guishability style as used in a lot of papers related to provable security where
the success of an attack is measured via its ability to distinguish the real values
of session keys from independent random values, or distinguish the real pair of
the session from a randomly chosen pair. In this time, the session should not be
exposed by any of the above attacks but identity reveal is not allowed against
test session for distinction of pairs (explained later). Moreover, the attacker is
prohibitted from exposing the matching session, where the input of two sessions
(P, s, Q) and (P ′, s′, Q′) are called matching if s = s′, P = Q′, and Q = P ′.
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The reason why an attacker is not allowed to expose matching session is as
follows. If an attacker can perform session-key query against a matching session,
she can easily distinguish real session key of the corresponding test session from
random value because the session key of the matching session is the same as
the session key of the test session. Similarly, if an attacker can perform iden-
tity reveal against a matching session, she can easily distinguish real pair of the
corresponding test session from randomly chosen pair because the pair who par-
ticipates the matching session is the same as the pair who participates the test
session.

The ability of the attacker to distinguish between real and random is formal-
ized via the notion of a test session that the attacker is free to choose among
all complete sessions in the protocol. Test session has two games: distinction of
session-key and distinction of pairs. In the distinction of sesson-key, before the
selection of test session, the attacker can perform identity reveal against any
session. When the attacker chooses the test session it is provided with a value v
which is chosen as follows: a random bit b is tossed, if b = 0 then v is the real
value of the output session key, otherwise v is a random value chosen under the
same distribution of session keys. After receiving v the attacker may continue
with the regular actions against the protocol; at the end of its run the attacker
outputs a bit b′. The attacker succeeds in its attack if (1) the test session is
not exposed (except for identity reveal), and (2) the probability that b = b′ is
significantly larger than 1/2.

On the other hand, in the distinction of pairs, the attacker is not allowd to
perform identity reveal against test session. When the attacker chooses the test
session it is provided with identities (A, B) which is chosen as follows: a random
bit b is tossed, if b = 0 then (A, B) is the true pair of the session, otherwise (A, B)
is a pair chosen in a “suitable” way within the list of all pairs that prepare a
pre-shared key. After receiving (A, B) the attacker may continue with the regular
actions against the protocol; at the end of its run the attacker outputs a bit b′.
The attacker succeeds in its attack if (1) the test session is not exposed, and (2)
the probability that b = b′ is significantly larger than 1/2.

– Here, we consider the method of suitable choice of a random pair. Suppose
the attacker knows one of the two parties Pi that activate the test session.
Then, since the attacker knows that the true pair must include Pi, the at-
tacker will succeed if a random pair does not include Pi. But if a random
pair also includs Pi, the attacker may fail the game. From this reason, we
can propose two method of choice of a random pair.
1. Random choice from all possible pairs except for the real pair
2. Random choice from all possible pairs that do not include either of the

real partys’ identities
The game with the former choice method means that the attacker should
guess both parties’ identities, while the game with the latter one means that
the attacker can win even if only one of the parties can be distinguished (if
there are no pair in a list of candidates for random choice, then the attacker
wins). Because our aim is to protect both parties’ identity, we apply the
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latter way as “suitable” choice to our model. (Note that, in the case that
each party shares a long-term secret with only one special party, e.g., server-
client system, the attacker can always win the game using the latter way)

The resultant security notion for key-exchange protocol is called SK-ID-
security and is stated as follows:

Definition 1. (SK-ID-security) An attacker with the above capabilities is called
an SK-ID-attacker. A key-exchange protocol π is called SK-ID-secure if for all
SK-ID-attackers A running against π it holds:

1. If two uncorrupted parties complete matching sessions in a run of protocol
π under attacker A then, except for a negligible probability, the session key
output in these sessions is the same.

2. A succeeds (in its test-session distinguishing attacks) with probability not
more than 1/2 plus a negligible fraction.

3 PAS Protocol

Here we provide a description of our pre-shared key based key-exchange protocol
using Pre-Agreed Session-id (we call it PAS protocol). In the next section we
provide a proof of this protocol, and in the subsequent section we will pick up
some topics about which we should argue. The PAS protocol is as follows.

Initial Information: Primes p, q, q|p−1, and g with order q in Z∗
p . Each player

has long-term secret key(s) shared with his/her partner(s). The protocol uses
a message authentication family MAC, and a pseudorandom function family
PRF .

The Protocol Messages: (in m-th session)

– Start message (I → R): PASm
ij , gx

– Response message (R→ I): PASm
ij , gy, MACk2(“1”, PASm

ij , Pi, g
y, gx, gxy)

– Finish message (I → R): PASm
ij , MACk2(“0”, PASm

ij , Pj , g
x, gy, gxy)

The Protocol Actions: (in m-th session)

1. An initiator Pi selects IDj as a responder of the key-exchange (IDj is one
of the parties who have already prepared a pre-shared key, PSKij, and pre-
agreed session-id, PASm

ij , between Pi). The start message is sent by the
initiator Pi upon activation with session-id PASm

ij (after checking that no
previous session at Pi was initiated with identifier PASm

ij ); the DH exponent

gx is computed with x
R← Zq and x is stored in the state of session (Pi, s).

2. When a (first) start message with session-id PASm
ij is delivered to a party

Pj , Pj retrieves PSKij corresponding to PASm
ij and if session-id PASm

ij did
not exist before at Pj , Pj activates a local session PASm

ij (as responder). It
now generates the response message where the DH exponent gy is computed
with y

R← Zq, and produces the MACk2 value with k2 where gxy is computed



380 Kenji Imamoto and Kouichi Sakurai

by Pj as (gx)y. Here, gx is the value contained in the start message. Finally,
the value k0 = PRFgxy(“0”) and k1 = PRFgxy (“1”) are computed and kept
in memory, and the values y and gxy are erased.

3. Upon receiving a response message with session-id PASm
ij , if Pi has never

received a valid response message with PASm
ij beforehand, then Pi retrieves

PSKij corresponding to PASm
ij contained in the response message and

verifies the MAC on the quadruple (“1”, PASm
ij , Pi, g

y, gx, gxy) under key
k2 = PRFPSKij (“2”). Here, gx is the value sent by Pi in the start message,
gy is the value received in this response message, and gxy is computed by Pi

as (gy)x. If this verification step fails the session is aborted. Otherwise, Pi

regards the message as a valid response and completes the session with secret
session key k0 computed as k0 = PRFgxy(“0”) and the pre-agreed session-id
for the next session k1 (i.e., PASm+1

ij ) computed as k1 = PRFgxy (“1”). The
finish message is sent and the session state erased.

4. Upon receiving the finish message of session PASm+1
ij , Pj verifies the MAC

value on the quadruple (“0”, PASm
ij , Pj , g

y, gx, gxy) under key k2 computed
in step 2 and with gy being the DH value that Pj sent in the response
message. If this verification step fails the session is aborted. Otherwise, Pj

completes the session with secret session key k0 and the pre-agreed session-id
for the next session k1. The session state is erased.

4 Proof of PAS Protocol

4.1 The Statements

We start by formulating the Decisional Diffie-Hellman (DDH) assumption which
is the standard assumption underlying the security of the DH key exchange
against passive attackers. For simplicity, we formulate this assumption for a
specific family of DH groups, but analogous assumptions can be formulated for
other groups.

Assumption 2. Let κ be a security parameter. Let p,q be primes, where q is
of length κ bits and q|p − 1, and g be of order q in Z∗

p . Then the probability
distributions of quintuples
Q0 =

{
〈p, g, gx, gy, gxy〉 : x, y

R← Zq

}
and Q1 =

{
〈p, g, gx, gy, gr〉 : x, y, r

R← Zq

}
are computationally indistinguishable.

In addition to DDH assumption, we will assume the security of the other un-
derlying cryptographic primitives in the protocol (i.e., message authentication
codes, and pseudorandom functions) under the standard security notions in the
cryptographic literature.

Theorem 3 (Main Theorem). Assuming DDH and the security of the underly-
ing cryptographic functions (i.e., MAC and PRF), PAS protocol is SK-ID-secure
as defined in Section 2.

In order to prove the main theorem, we need to prove the following three prop-
erties of SK-ID-secure protocols. (we use the term PAS-attacker to denote an
SK-ID-attacker working against the PAS protocol):



Key-Exchange Protocol Using Pre-agreed Session-ID 381

P1. If two uncorrupted parties Pi and Pj complete matching sessions ((Pi, s,
Pj) and (Pj , s, Pi), respectively) under the PAS protocol then, except for a
negligible probability, the outputs of each party (that is, the session key and
the pre-agreed session-id) in these sessions are the same.

P2. No efficient PAS-attacker can distinguish a real session key to the test-
session query from a random response with non-negligible advantage. More
precisely, if for a given PAS-attacker we define:
– PKREAL(A)=Prob(A outputs 1 when given the real test session key)
– PKRAND(A)=Prob(A outputs 1 when given a random test session key)

then we need to prove that for any PAS-attacker A:

|PKREAL(A)− PKRAND(A)| is negligible.

P3. No efficient PAS-attacker can distinguish a real pair who activates the test-
session from another randomly chosen pair with non-negligible advantage.
More precisely, if for a given PAS-attacker we define:
– PPREAL(A)=Prob(A outputs 1 when given the real pair of the test

session)
– PPRAND(A)=Prob(A outputs 1 when given a randomly chosen pair of

the test session)
then we need to prove that for any PAS-attacker A:

|PPREAL(A)− PPRAND(A)| is negligible.

In section 4.2, 4.3, and 4.4, we show the proof (or proof sketch) that our
protocol can realize above properties (i.e., P1, P2, P3). From this result, the
main theorem can be proven.

4.2 Proof of Property P1

Proof: Let A be a PAS-attacker, and let Pi and Pj be two uncorrupted parties
that complete matching sessions (Pi, s, Pj) and (Pj , s, Pi). Clearly, property P1
can be proved by showing that both parties compute the same DH value gxy

because the session key k0 and the pre-agreed session-id are deterministically
derived from it. Let us denote ui the DH exponent sent in the start message
by Pi where ui = gxi with xi chosen by Pi, and let vi denote the DH exponent
received in the response message of session s (Pi must receive it to complete the
session). Similarly, let ur be the DH exponent received by Pj in the incoming
start message of session s, and vr be the DH exponent sent by Pj in its response
message where vr = gxr with xr chosen by Pj .

The MAC value produced by Pj during session s is MACk2(“1”, s, Pi, ur, vr,
wr), while the MAC value Pi verifies in the response message is MACk2(“1”, s,
Pi, ui, vi, wi). Since the first MAC value is the only one that Pj ever produces
with the value s as the session id, then it must be that either all arguments to
the first and second MAC value are the same, or a valid MAC containing the
pair (ui, vi, wi) was produced by the attacker even though Pj did not generated
such a MAC value. If the later case happens with non-negligible probability then
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we can use the attacker A under a simulation of the basic protocol to produce
a forger for the underlying MAC scheme. Since we assume MAC to be a secure
scheme this event must have negligible probability. Therefore, we get that except
for such a negligible probability, ur = ui and vr = vi.

Now the DH key computed by Pi is vxi

i = vxi
r = (gxr)xi = gxixr , while the

DH key computed by Pj is uxr
r = uxr

i = (gxi)xr = gxixr . Therefore, both parties
compute the same session key and the pre-agreed session-id for the next session.

4.3 Proof Sketch of Property P2

We prove P2 by showing that if a PAS-attacker can win the game with signif-
icant advantage then we can build an attacker against one of the underlying
cryptographic primitives used in the protocol (the plan is almost the same as
[3]).

Now we will show that from any PAS-attackerA that succeeds in distinguish-
ing between a real and a random response to the test-session query we can build
a DDH distinguisher D that distinguishs triple (gx, gy, gxy) from (gx, gy, gr) with
the same success advantage as A. D gets (gx, gy, z) as input where z is either
gxy or gr for r

R← Zq. D starts by simulating a run of A on a virtual run of PAS
protocol, and uses the value gx and gy as the DH exponents in the start and
response message of one randomly chosen session, say s0, initiated by A. The
idea is that if A chooses this session s0 as its test session, then D can provide z as
the response to the test-session query by A. If A outputs that the response was
real then D will decide that z = gxy, otherwise D will decide that z is random.

4.4 Proof Sketch of Property P3

To prove P3, we have to show that if a PAS-attacker exists that can distinguish
the real pair who activates the session chosen by the attacker from a randomly
chosen pair with significant advantage, then we can built an attacker against the
underlying cryptographic primitive. Unlike the proof of P2, we don’t show the
direct reduction of the difficulty of the distinction of pairs to the difficulty of the
primitive. The proof sketch of P3 is as follows. First, we introduce new game
“the distinction of PAS”:

– When the attacker chooses the test session it is provided with a value v
which is chosen as follows: a random bit b is tossed, if b = 0 then v is the real
value of the output PAS, otherwise v is an output PAS of a session activated
after the completion of the test session. After receiving v the attacker may
continue with the regular actions against the protocol, however, the attacker
is allowed to perform identity reveal against arbitrary sessions except for
sessions activated after the completion of the test session. At the end of its
run the attacker outputs a bit b′. The attacker succeeds in its attack if (1) the
test session is not exposed, and (2) the probability that b = b′ is significantly
larger than 1/2.
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Here we will show that from any PAS-attackerA that succeeds in distinguish-
ing between a real and a random response to the above game query we can build
a DDH distinguisher D that distinguishs triple (gx, gy, gxy) from (gx, gy, gr) with
the same success advantage as A. D gets (gx, gy, z) as input where z is either
gxy or gr for r

R← Zq. D starts by simulating a run of A on a virtual run of PAS
protocol, and uses the value gx and gy as the DH exponents in the start and
response message of one randomly chosen session, say s0, initiated by A. The
idea is that if A chooses this session s0 as its test session, then D can provide
PRFz(0) as the response to the test-session query by A. If A outputs that the
response was real then D will decide that z = PRFgxy(0), otherwise D will
decide that z is random.

Next, we will show that from any PAS-attacker A′ that succeeds in distin-
guishing between a real and a random pair (in the game of the distinction of the
pair) we can build any PAS-attacker A that succeeds in distinguishing between
a real and a random response to the above game query with the same success
advantage as A′. A gets (gx, gy, z) as input where z is either PRFgxy(1) or gr

for r
R← Zq. A starts by simulating a run of A′ on a virtual run of PAS protocol,

and randomly chose a session s′0 initiated by A. The idea is that if A chooses
this session s′0 as its test session, then A can provide (Pi, Pj , z) as the response
to the test-session query by A′ (since A knows the real parties by an execution
of identity reveal against the test session, A can give real parties’ identities in
the response). If A′ outputs that the response was real then A will decide that
z = PRFgxy(1), otherwise D will decide that z is random.

In consequence of the above discussion, we can built a DDH distinguisher D
by using a PAS distinguisher A. Moreover, we can built A by using a pair dis-
tinguisher A′. Therefore, if A′ exists, we can built D, i.e., the DDH assumption
can be broken. However, since DDH is assumed to be broken with negligible ad-
vantage, the probability of distinguishing a real or random pair is also negligible
advantage. Therefore, we can derive property P3.

5 Variants and Discussions

5.1 Synchronization

Due to the use of pre-agreed session-id, our protocol can be regarded as a state-
full key-exchange, which results in the need of maintenance of session state. One
of the unavoidable problems related to the maintenance is synchronization of
the session state between honest parties. Especially in our method, failing in
synchronization of PAS causes a possibility that a session cannot be newly acti-
vated because legitimate PAS is needed in each message. Therefore, we argue a
countermeasure against this problem.

We can guess some origins which cause unsynchronization between honest
parties such as an interruption of the protocol, a misunderstanding of their
secret, a failure of their devices, etc. To simplify our analysis, let us assume,
however, that the causes of the problem are as follows.
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– PAS attacker impersonates a honest party and renews its PAS (the victim
cannot know new PAS)

– An interruption of the protocol due to a network accident or an attack
– Failing in generating PAS for next session

This restriction of the situations enables us to deal with the synchronization
problem. Moreover, under some assumptions, we can guarantee any lag of PAS is
within a session. Since the first and third causes can be clearly prevented because
of P1 of Main Theorem under the assumptions of cryptographic primitives, we
consider the second one in more detail.

Using a situation where a message could be vanished or a session may be
aborted at any time, each party could believe what happened as follows. Here, we
consider the cases of our protocol from the view of an initiator and a responder.

– In the case of an initiator, Pi

By verification of the response message with PASm
ij , Pi can believe Pj has

correctly computed the session key and PASm+1
ij then, the identifier of the

previous session, PASm−1
ij , can be erased from its memory. After that, Pi

sends the finish message, however Pi cannot believe Pj ’s “confirmation” be-
cause there is no assumption on the connection (it may be vanished).

– In the case of a responder, Pj

By verification of the finish message with PASm
ij , Pj can believe Pi has

correctly computed the session key and PASm+1
ij , then the identifier of the

previous session, PASm−1
ij , can be erased from its memory. However, by

just the procedures of m-th session, Pj cannot make Pi believe that Pj has
already confirmed because of the connection condition.

By the above analysis, we can conclude that the session state (i.e., PASm
ij )

cannot be erased before Pj makes Pi believe its confirmation. That is, the syn-
chronization problem can be solved by holding a session state until its confirma-
tion.

5.2 DoS-Resilient

Here we discuss how to improve a resistance against DoS attack in a key-exchange
protocol. There are three types of DoS attack: against responder’s bandwidth,
memory, and CPU. The purpose of the first attack is that a responder cannot
receive any more message. The second one is performed to make a responder
store large quantities of waste states. The last one is the attack which makes
a responder compute a lot of quite inefficient processing. Since it is difficult to
consider the DoS attack against bandwidth only in the area of a key exchange
protocol, we consider the other attacks. (The first attack can be prevented in
another layer [11].)

To analyse a countermeasure against DoS attack, we need to introduce new
concepts of time and processing. But to simplify our analysis, we regard pub-
lic key operations (e.g., public key encryption/decryption, Diffie-Hellman key
exchange, digital signature) as inefficient processing.
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Concepts of Time

– fresh: information generated within an acceptable time (“acceptable” is de-
fined in each system)

– new : information generated after the activation of the session (this notion is
used in [13, 14])

In other words, fresh information can provide absolute time, and new infor-
mation can provide relative time. To check whether a message is fresh and/or
new or not, there are three types of nonces, i.e., random number, sequence num-
ber, and timestamp. Each nonce must be controlled by a verifier. Table 1 shows
properties each nonce can provide.

Table 1. Properties each nonce can provide.

fresh new

Random number ◦ ◦
Sequence number ◦

Timestamp ◦

By using these notions, we refine the well-known existing properties presented
in cryptographic literature ([13, 14] do not have the notion of fresh).

– Entity authentication means that a party can believe that the intended peer
sent a fresh message.

– Authentication means that a party can believe that the intended peer sent
a fresh and new message.

Fresh information is required for authentication, but new information is re-
quired to prevent DoS attack against memory and CPU. This is because new
information can make a responder store a session state and/or perform a pro-
cessing once for all (fresh information may be used once and again within an
acceptable time). From this reason, timestamp may not be a suitable tool to im-
prove the tolerance to DoS attack (PAS could be seen as sequence number). The
following procedures are needed in order to cope with it to DoS attack against
memory and processing.

1. The responder does not respond any request, which asks inefficient process-
ing, from a party the responder cannot specify. (in the case that identified
party attempts on DoS attack, the access from the party can be discon-
nected).

2. The responder only responds to new requests, which ask inefficient process-
ing, to prevent DoS attack based on replay attack.

3. The requester does not change his/her new demand even when aborted.
4. The responder responds new reply to a new request to prevent replay attack

which uses new request once and again.
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SIGMA is the system which has the low tolerance to DoS attack because it
performs inefficient processing, such as gy, and stores session state to its memory
before the responer specifies its partner. Moreover, since it is not taken into con-
sideration about the processing in the case of the aborted protocol by rewriting
of the transmitting message, it is fragile against the attacker’s obstruction.

On the other hand, our protocol firstly checks PAS to specify the partner, but
a responder who receives a start message cannot verify whether a key-agreement
material gx is new or not. This results in that the protocol could be fragile
(in the case that the responder rejects any requests for the session if a session is
aborted) or low tolerance to DoS attack (in the case that the responder responds
to any requests for the session even if a session is aborted).

In order to solve this problem, we slightly modify PAS protocol to verify that
the key agreement material gx received in the start message is new as follows.

The DoS-Resilient Protocol Messages:

– Start message (I → R): PASm
ij , gx, MACk2(PASm

ij , Pj , g
x)

– Response message (R→ I): PASm
ij , gy, MACk2(“1”, PASm

ij , Pi, g
y, gx, gxy)

– Finish message (I → R): PASm
ij , MACk2(“0”, PASm

ij , Pj , g
y, gx, gxy)

Because a responder of this protocol verifies the MAC value contained in the
start message, it can believe gx is new, and it is generated by the initiator. The
responder calculates gy, gxy and stores new session state after the confirmation
of the start message. Moreover, the above processing is performed only against
the first start message. In this time, the responder replies the same value sent
in the first response message to any replay of the start message.

However, by this system, when PSKij is revealed, an attacker has the danger
that correlation of communication will become possible though PAS realizes PFS
(the following session explains), since MACk2(PASm

ij , Pj , g
x) is calculable from

PSK and eavesdropping information. The measure for this problem is one of the
future subjects.

5.3 Perfect Forward Secrecy

Informally, the notion of “Perfect Forward Secrecy” (PFS) is stated as the prop-
erty that compromise of long-term secret does not compromise past short-secret
such as session keys. In other words, it means that even if a party is corrupted
then nothing is learned about sessions within that party that were previously
unexposed and expired before the party corruption happened.

Since our protocol is based on Diffie-Hellman key exchange, any expired
session keys and PAS enjoy PFS under the cryptographic primitives.

6 Conclusion

Based on the existing adversary model, this paper defined the security model
which took privacy into consideration. In order to design secure key-exchange
protocol, Pre-Agreed Session ID (PAS) which is a disposable identification was
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introduced for every session, and the key exchange protocol which protected
identity on a party from the attacker was proposed. Moreover, it analysed about
Synchronization, a DoS attack, and PFS as a problem which arises when PAS
is introduced. As a future subject, we need to consider efficient countermeasure
to DoS attack, and synchronization.
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Abstract. Public and private communication networks have a growing
importance for our daily life. The globally networked society places great
demand on the dissemination and sharing of person-specific data. In or-
der to protect the anonymity of individuals to whom released the data
refer, data holders often remove or encrypt explicit identifiers such as
names, addresses and phone numbers. But these cannot solve the prob-
lem well. Anonymous communication protocols address the problem of
concealing who communicates with whom, as in the case of letters from
a secret admirer. To gain efficiency, k-anonymous message transmission
is presented.
Informally, a communication protocol is sender k-anonymous if it can
guarantee that an adversary, trying to determine the sender of a partic-
ular message, can only narrow down its search to a set of k suspects.
Receiver k-anonymity places a similar guarantee on the receiver: an ad-
versary, at best, can only narrow down the possible receivers to a set
of size k. In this paper, a k-anonymous transmission protocol is pre-
sented. The protocol is based on asymmetric encryption algorithm. All
the members in the protocol is divided into smaller groups, and if all
the members in the group perform the protocol correctly, the protocol
is sender k-anonymous and receiver k-anonymous. Furthermore, as long
as the asymmetric encryption algorithm is secure, our protocol is secure,
too.

Keywords: anonymous transmission, cryptographic protocol, security

1 Introduction

Anonymity and data privacy are critical for many networked applications.
Anonymity is shielding the user’s identity from entities such as web servers,
network providers and crackers. And data privacy is protecting the personal
information of users from attack by outside sources. There are many reasons
to hide your real identity when you use the Internet. Sometimes you want to
send something without having your real name attached to it. For example, you
might want to post personal messages to a Usenet newsgroup without identifying
yourself to the whole world as the poster.

C.H. Lim and M. Yung (Eds.): WISA 2004, LNCS 3325, pp. 388–399, 2004.
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Anonymous communication protocols have been studied extensively in the
scientific literature. These protocols address the problem of concealing who com-
municates with whom, as in the case of letters from a secret admirer. In the
anonymous protocols, the adversary is allowed to see all the communications in
the network, but he still cannot determine the sender or recipient of a message.
Anonymous communication has many important applications in the real world,
such as casting a ballot in a voting booth, engaging in a cash-based financial
transaction, or getting tested for certain medical conditions.

The goal of most former research is usually to guarantee full anonymity.
There are three types of anonymous communication properties that can be pro-
vided: sender anonymity, receiver anonymity, and unlinkability of sender and
receiver [9]. Sender anonymity means that the identity of the party who sent
a message is hidden, while its receiver (and the message itself) might not be.
Receiver anonymity similarly means that the identity of the receiver is hidden.
Unlinkability of sender and receiver means that though the sender and receiver
can each be identified as participating in some communication, they cannot be
identified as communicating with each other.

To gain efficiency, L. von Ahn, et al. concentrate on a weaker goal, k-anonym-
ity [1]: the adversary is able to learn something about the origin or destination
of a particular message, but cannot narrow down its search to a set of less than
k participants. In other words, k-anonymity guarantees that in a network with
n honest participants, the adversary is not able to guess the sender or recip-
ient of a particular message with probability non-negligibly greater than 1/k,
where k is a constant smaller than, but otherwise not related to n. While k-
anonymity is a weaker guarantee, it is still sufficient for a variety of applications.
For example, if the participants in the peer-to-peer network were communicat-
ing k-anonymously, the music industry could not prosecute individuals in this
manner. k-anonymity is also enough for the protection of privacy in everyday
transactions, as it effectively breaks data profiling techniques.

In this paper, we present a new k-anonymous transmission protocol. The
protocol is based on asymmetric encryption algorithm. All the members in the
protocol is divided into smaller groups, and if all the members in the group
perform the protocol correctly, the protocol is sender k-anonymous and receiver
k-anonymous.

The organization of this paper is as follows: The rest of this section describe
a few solutions to the anonymous communication problem. Section 2 presents
the basic cryptographic notions we will need for the paper, and also introduces
the definitions such as anonymous communication and k-anonymous communi-
cation. Section 3 presents the new k-anonymous communication protocol. And
Section 4 gives the security analysis of our protocols. Finally, Section 5 concludes
this paper with a discussion and some open questions.

1.1 Related Work
Till now, a lot of work in both research and practice has been done for anonymous
message transmission (see [14, 15, 4–6, 8, 11]). Below we describe a few of the most
influential solutions to the anonymous communication problem.



390 Gang Yao and Dengguo Feng

Proxies and Proxy Chaining [7]. The simplest way to shield the identity of
the user is to forward all traffic from that client to a proxy server which submits
all request on the user’s behalf. For example, if Computer A wants to send a
message to Computer B, Computer A sends a message to Computer P which in
turn forwards the message to Computer B on A’s behalf. This approach suffers
from the same setbacks as any centralized system. If an entity can eavesdrop on
Computer P the anonymity of all the computers which forward messages to P
are compromised. The other concern is if P is trustworthy or not. The proxy
method can be improved with the help of proxy chaining. Instead of P passing on
the message from A to B it forwards to P1 which in turn forwards the message
to B. In this case P1 does not know the origin of the message, and the identity
of the A is more protected.
DC-Nets [3, 16]. DC-Nets, or Dining-Cryptographer networks, originally sug-
gested by Chaum in [3], is an anonymous broadcast protocol that bases its
anonymity on the strength of a secure multiparty sum computation. In the ab-
sence of trusted parties, this model provides unconditionally or cryptographically
secure, depending on whether it is based on one-time-use keys or on public keys,
respectively. The original system is improved by Waidner in [16], which allows
to send and receive messages anonymously using an arbitrary communication
network, and proved to be unconditionally secure. However, the poor scalability
of DC-Nets makes it unsuitable for medium or large-scale use.
Mix-Nets [2]. Mix-Nets, introduced by Chaum in 1981, was one of the first
concepts for anonymous communication. A model based on public key cryptog-
raphy is presented that allows an electronic mail system to hide who a participant
communicates with as well as the content of the communication. The technique
does not require a universally trusted authority. One correspondent can remain
anonymous to a second, while allowing the second to respond via an untrace-
able return address. The system includes a trusted computer called “Mix” to
shuffle messages and route them, thus confusing traffic analysis. Chaining Mixes
together to form a path, combined with Mix-to-Mix and end-to-end encryption,
offers a form of provable security against a completely passive adversary.
Crowds [10]. Crowds is introduced by Reiter and Rubin in 1998 to protect
users’ anonymity on the world-wide-web. Similar to Mix-Nets, this system pro-
vides paths to disguise the originator of a message. Their approach works by
grouping web users into a geographically diverse collection, called a crowd, which
retrieves information on its users’ behalf by way of a simple randomized routing
protocol. Paths in Crowds are determined randomly by the machines through
which a message passes, rather than by the originator of the message. Web servers
are unable to learn the true source of a request because it is equally likely to
have originated from any member of the crowd. Using degrees of anonymity, they
have characterized the anonymity properties provided by the protocol against
several classes of attackers.
CliqueNet [12]. CliqueNet, introduced by Sirer, et al., outlines a design for
a peer-to-peer, scalable, tamper-resilient communication protocol that provides
strong anonymity and privacy. The system combines small DC-Nets with a rout-
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ing layer to mitigate the scalability problems of DC-Nets. The protocol provides
an information-theoretic guarantee: an omnipotent adversary that can wiretap
at any location in the network cannot determine the sender of a packet beyond
a clique. CliqueNet has the undesirable feature, however, that an adversary who
controls l network nodes can completely compromise the anonymity of l−1 other
nodes of its choice. Furthermore, CliqueNet’s routing layer induces a high amount
of unnecessary network latency and is not secure against non-participation, al-
lowing an adversary who controls a few nodes to partition the network.
k-Anonymous Message Transmission [1]. A k-Anonymous message trans-
mission protocol is presented by Ahn, et al. in 2003. They introduce the notions
of sender and receiver k-anonymity and consider their applications. They show
that there exist simple and efficient protocols which are k-anonymous for both
the sender and the receiver in a model where a polynomial time adversary can
see all traffic in the network and can control up to a constant fraction of the
participants. The presented protocol is provably secure, practical, and does not
require the existence of trusted third parties.
Receiver Anonymity via Incomparable Public Keys [17]. A receiver
anonymity via incomparable public keys is presented by Waters, et al in 2003.
They describe a new method for protecting the anonymity of message receivers
in an untrusted network. The method relies on the use of multicast, along with
a novel cryptographic primitive that we call an Incomparable Public Key cryp-
tosystem, which allows a receiver to efficiently create many anonymous “identi-
ties” for itself without divulging that these separate “identities” actually refer to
the same receiver, and without increasing the receiver’s workload as the number
of identities increases.

2 Preliminaries

In this section, we present the basic cryptographic notions and definitions we
will need for the paper.

2.1 Notation

Before we present the protocol, we describe the notations used in the protocol:

M the message space
n number of members in the protocol

i, j indices of members (range [1, n])
m number of groups in the protocol
g indices of group (range [1, n/k])

Pi the i-th member
Gi the i-th group
li the length of message that Pi wants to transfer

eP the public key of member P
dP the private key of member P
k the key for symmetric key algorithm
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Denote the symmetric encryption and decryption with respect to a secret key
k by Ek(·) and Dk(·), respectively, and denote the asymmetric encryption using
a public key e and the corresponding asymmetric decryption using a private key
d by (·)e and (·)d, respectively. If a member in the network encrypts a random
string and sends it to another member, we call this message a masked message.

2.2 Definition

We briefly review the concept of anonymous communication [1].
An anonymous communication protocol for message space M is a compu-

tation among n parties P1, . . . , Pn, where each Pi starts with a private input
(msgi, pi) ∈ (M× [n]) ∪ {(nil, nil)}, and each party terminates with a private
output from M∗. To communicate, time will be split into rounds and the proto-
col will be run at each round. Intuitively, at the end of a round each Pi should
learn the set of messages addressed to him ({msgj : pj = i}), but not the identity
of the senders.

We let H ⊂ {P1, . . . , Pn} denote the set of honest parties. We denote by
P(P1(msg1, p1), . . ., Pn(msgn, pn)) the random variable distributed according
to the adversary’s view of the protocol P when each Pi has input (msgi, pi).
We denote by P(Pi(msgi, pi), ∗) the adversary’s view of P when Pi has input
(msgi, pi) and the other inputs are set arbitrarily.

A protocol P is sender anonymous if for every pair Pi, Pj ∈ H , and every
pair (msg, p) ∈ (M× [n]) ∪ {(nil, nil)}, P(Pi(msg, p), ∗) and P(Pj(msg, p), ∗)
are computationally indistinguishable.

That is, a protocol is sender anonymous if the adversary may not distinguish
between any of the honest parties as the sender of a message, regardless of who
the receiver is; i.e., the adversary “gains no information” about the sender.

A protocol P is receiver anonymous if for every P ′ ∈ H , for every msg ∈M
and every Pi, Pj ∈ H , P(P ′(msg, Pi), ∗) and P(P ′(msg, Pj), ∗) are computa-
tionally indistinguishable.

According to the previous definitions, the trivial protocol in which no party
transmits anything is both sender and receiver anonymous.

Assuming that the protocol is non-trivial (i.e., useful), sender anonymity
requires every honest party, even if they have no message as an input, to send at
least one protocol message per anonymous message delivered. Thus any protocol
which is sender anonymous has a worst-case lower bound of n protocol messages
per input message, since in the worst case, all parties but one have input (nil, nil).
If n is large, this lower bound makes it unlikely that a system providing full
anonymity can be fielded in practice.

A protocol P is sender k-anonymous if it induces a partition {V1, . . . , Vl} of
H such that:

1. |V s| ≥ k for all 1 ≤ s ≤ l;
2. For every 1 ≤ s ≤ l, for all Pi, Pj ∈ Vs, for every (msg, p) ∈ (M× [n]) ∪
{(nil, nil)}, P(Pi(msg, p), ∗) and P(Pj(msg, p), ∗) are computationally indis-
tinguishable.
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That is, each honest party’s messages are indistinguishable from those sent by
at least k − 1 other honest parties.

A protocol P is receiver k-anonymous if it induces a partition {V1, . . . , Vl}
of H such that:

1. |Vs| ≥ k for all 1 ≤ s ≤ l;
2. For every 1 ≤ s ≤ l, for all Pi, Pj ∈ Vs, for every P ′ ∈ H , msg ∈ M:
P(P ′(msg, Pi), ∗) and P(P ′(msg, Pj), ∗) are computationally indistinguish-
able.

That is, each message sent to an honest party has at least k indistinguishable
recipients.

3 The Protocol

Our solution to the k-anonymous message transmission problem uses the asym-
metric key algorithm. Suppose that all the member agree on a public key algo-
rithm, say RSA, and a symmetric key algorithm, say the Advanced Encryption
Standard (AES).

3.1 Protocol Preparation

Suppose that there are n members using the protocol to transfer message.
Before the k-anonymous message transmission protocol is performed, all the

members need to get a long term public/private key pair which can be used for
a number of purposes. In fact, this could be the usual public/private key pair
that can be used for a variety of purposes such as electronic payment, email, and
so on.

In order to band the public/private key pair to a legal member, we may use
certificate system. Obtaining such public/private key of a certificate can be done
via either a secure online channel or an off-line method such as physical access
to a trusted certification authority. Let (eP , dP ) be the public/private key pair
of member P .

When generating the public/private key pair, a member needs to generate a
pair of RSA public/private key {e, d} and two large prime numbers; the product
of the prime numbers forms a modulo n, where de = 1 mod φ(n).

In order to increase the efficiency of the protocol, we partition the n members
in the protocol into smaller groups of size O(k). The following protocol may be
performed by each group individually.

3.2 Collection Phase

In a group, suppose a member wants to transfer a message to another member
in the network anonymously. Each member Pi in the group chooses gi, index
of the group that the receiver belongs to, and li, the length of the message he
wants to transfer. If Pi do not want to send message, he may choose gi greater
than g.
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1. Each member Pi chooses gi and li, then he computes xi = (gi||li)e0 where
e0 is the public key of the group leader.

2. Pi randomly chooses j ∈ [1, k] and sends xi to Pj .
3. Received xi, Pj sends it to the group leader.
4. Received xi, the group leader computes yi = xd0

i to gets gi and li, here d0 is
the private key of the group leader.

5. If n/k ≤ gi, the group leader discards this message; if 1 ≤ gi ≤ n/k, the
group leader publish gi. Let l denotes the biggest li among all the li satisfies
1 ≤ gi ≤ n/k. The group leader also publish l.

After the group leader publish l and all the indexes, each member Pi checks that
whether the group index gi is in the publish index set and whether the length
li is smaller than l. If both conditions are satisfied, the member Pi broadcasts
“yes” message, otherwise, he broadcasts “no” message.

If all the members in the group broadcast “yes” message, the protocol goes
to the next step, otherwise, the protocol stops.

3.3 Transmission Phase

In the last step, each member in the group, say group A, knows gi, the index of
the group which a message will be transferred to, and l, the length of the message
that can can be transferred. Now, suppose that a message will be transferred to
a member in the group gi, say group B, then all the member in the group may
perform the following protocol.

1. Pi, the i-th member in group A, gets the public keys of all the members in
group B. The Pi randomly chooses a secret key ki,j , 1 ≤ j ≤ nB, where nB

is the number of members in the group B.
2. If Pi wants to transfer message msgi,j to Qj, the j-th member in the group

B, computes k′
i,j = (ki,j)eB,j and msg′i,j = Eki,j (msgi,j), where eB,j is the

public key of the j-th member in the group B. If the length of the message
megi,j is smaller than l, Pi may pad 0 at the end of the message.

3. If Pi does not want to transfer message to Qj , he chooses a random string
as the message msgi,j . Then, he computes k′

i,j = (ki,j)eB,j and msg′i,j =
Eki,j (msgi,j).

4. Pi sends the message k′
i,1||msg′i,1|| . . . ||k′

i,nB
||msg′i,nB

to the group leader.
5. Receiving all the messages, the group leader construct a message Mj and

send it to the j-th member of group B, where 1 ≤ j ≤ nB. Here,

Mj = k′
i1,j||msg′i1,j|| . . . ||k′

inA
,j||msg′inA

,j ,

where {i1, . . . , inA} is a permutation of {1, . . . , nA}.

Receiving the message Mj , Qj can obtain the ki,j by computing (k′
i,j)

dB,j ,
and msgi,j by Dki,j (msg′i,j).
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4 Analysis

The objective of our research is to protect users’ anonymity on Internet. Here, we
informally analyze two important issues: performance and security, for evaluating
the proposed protocol.

Suppose that Pi, a member in group A, wants to transfer a message msg to
Qj , a member in group B.

4.1 Performance

In the last section, we introduce our k-anonymous transmission protocol. The
security of our protocol is based on asymmetric encryption algorithm. All the
members in the protocol needs to get a public/private key pair. When the mem-
bers are divided into small groups, some members who trust each other may
construct a group, or a member may be appointed to a group by the system.

In the collection phase, if a member in a group wants to send messages to
several members, he may encrypt each index and send each encrypted message to
different member in the group simultaneously. Then all the encrypted messages
will be forwarded to the group leader and all the indexes will be published by the
group leader. In the protocol, the group leader publish the length of the longest
message wanted to transfer. In order to reduce the transmission bits, for each
group index, the group leader may publish the length of the longest message
that is transferred to that group.

In the transmission phase, a member may sends different message to different
member in the group B. He just encrypts each message by the public key of
corresponding member, then sends the messages with masked messages to the
group leader. Reconstructed by the group leader, the messages will be sent ro
the corresponding messages. Moreover, a member in the group B may receive
several messages from the different members in the group A at one time.

4.2 Robustness

In collection phase, Pi encrypts the index of group B and sends it to another
member in the group. That member forwards this message to the group leader.
The group leader can obtain the index of the group B by decrypting the message,
and then he can publish this index.

In transmission phase, Pi encrypts the message msg and sends it to the group
leader with some masked messages. The group leader constructs a new message
Mj including msg′ and some other masked messages, and then sends Mj to Qj .
Receiving the message Mj, Qj may obtain the message msg by decrypting the
message Mj .

Consequently, if all the members in the group perform the protocol correctly,
the protocol may transfer the message msg of Pi to the member Qj .

4.3 Anonymity

Let us consider the anonymity in this subsection. First, we consider the sender’s
anonymity.
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In our protocol, since both the messages transferred in the group A and the
messages transferred between group A and group B are encrypted, and all the
members in the group A send the message to the group leader, the adversary
outside the group cannot decide which message is the transferred message and
which message is just a encrypted random string. Thus, the adversary outside
the group cannot know which member in the group sends the message.

The group leader cannot decide which member in the group sends a message.
The reasons are as follows: In the collection phase, the group leader receives a
forward message, he cannot know who is the original sender. In the transmission
phase, the group leader receives encrypted messages from every member in the
group, and he cannot decide which message is the transferred message.

In the collection phase, the group member forwards a message to the group
leader, but he cannot know the message is encrypted from an index or just
a random number. In the transmission phase, he cannot decide who transfer
a message, too. Thus, the group member cannot decide which member in the
group sends a message.

For the member is the group B, if he receives a real message, he only knows
that the message is forwarded by the group leader or the group A, but he cannot
decide which member in the group A sends the message.

To sum up, if all the members in the group perform the protocol correctly,
the protocol is sender k-anonymous for all the group.

Second, we consider the receiver’s anonymity.
In our protocol, since the messages transferred between group A and group

B are encrypted, and all the members in the group B receives the message
from the group leader of the group A, the adversary outside the group cannot
decide which message is the transferred message and which message is just a
encrypted random string. Thus, the adversary outside the group cannot know
which member in the group B receives the message.

The group leader cannot decide which member in the group B receives a
message. This is because the group leader receives encrypted messages from
every member in the group, and he cannot decide which message he construct
include the transferred message. Similarly, the group member cannot decide
which member in the group B receives a message.

To sum up, if all the members in the group perform the protocol correctly,
the protocol is receiver k-anonymous.

4.4 Privacy
In our protocol, all the transferred messages are encrypted. If a member Pi sends
the message msg to the member Qj, this message is encrypted by the secret key
ki,j . This secret key is encrypted by the public key of Qj and sends to Qj. Thus,
the message msg can be read only by Qj. The others cannot get the message
msg since they do not know the private key of Qj.

4.5 More Discussion on Receiver
In our protocol, we use certificate system to band the public/private key pair
to a legal member. Thus, the sender knows who receives the messages. If we
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want to fully protect receiver anonymity, we may use the method presented by
Water, et al in [17]. The holder of a secret key generate a large number of public
encryption keys such that any message encrypted with any of these public keys
can be decrypted by one secret key. All the members in a group publish their
public keys in a list. The message transmitted to a group will be encrypted by
one of the public keys in the group public key list. Then, the message will be
received by one member in the group.

4.6 Efficiency
First, we evaluate the message complexity of our protocol. In the collection phase,
each member in the group can send one or more messages to the other members,
so the message generated by a member is O(1). Thus, the total messages in this
step is O(k), since there is O(k) members in a group. Then, all the messages
are forwarded by a member in the group, thus, the total messages in this step is
O(k), too. Therefore, the total messages in the collection phase is O(k). In the
transmission phase, each member sends a message to the group leader. Then the
group leader sends a constructed message to each member in the group B. Since
both the group A and group B have O(k) members, the total messages in the
transmission phase is O(k). From all above, the total message transferred in one
round is O(k).

Second, we evaluate the bit complexity of our protocol. In the collection
phase, the total messages in the collection phase is O(k). From the protocol, we
see that each message in this phase is just to encrypt a number, so, if the length of
the module in the RSA encryption system is l, the length of every message in this
phase is l. Thus, the total transferred bits in the collection phase is O(kl). In the
transmission phase, each member sends a message to the group leader. From the
protocol, we can see that each message can be divided into O(k) parts, and the
length of each part is l +L, where L is the biggest length of message to transfer.
So, the total bits of each message is O(k(l + L)), and the total transferred bits
in this step is O(k2(l + L)), since there are O(k) member in the group. Then
the group leader sends a constructed message to each member in the group B.
These messages are just a reconstruction of the messages sends to the group, so
the total transferred bits in the transmission phase is O(k2(l + L)), too. That is
to say that the total transferred bits in this step is O(k2(l+L)). From all above,
the total bits transferred in one round is O(k2(l + L)) + O(kl) = O(k2(l + L)).

Third, we evaluate the computational complexity of our protocol. In the col-
lection phase, each member sends one or more encrypted messages to the other
members, and then the other member forwards the message, thus, in this phase,
each member do O(1) asymmetric encryption operation, and the total asymmet-
ric encryption operation is O(k). In the transmission phase, each member need
to do O(k) asymmetric encryption operation and O(k) symmetric encryption
operation. Thus, the total asymmetric encryption operation is O(k2), and the
total symmetric encryption operation is O(k2), too. Receiving the message, Qj ,
a member in group B, need to do O(k) asymmetric decryption operation and
O(k) symmetric decryption operation. Thus, the total asymmetric decryption
operation is O(k2), and the total symmetric decryption operation is O(k2), too.
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5 Conclusion and Future Works

In this paper, we present a k-anonymous transmission protocol based on asym-
metric encryption algorithm. All the members in the protocol is divided into
smaller groups of size O(k), and if all the members in the group perform the pro-
tocol correctly, the protocol is sender k-anonymous and receiver k-anonymous.
The new features of this protocol are:

– Our protocol provides the privacy for the message. As long as the asymmetric
encryption algorithm is secure, our protocol is secure, too.

– In our protocol, a member in a group may sends different message to different
member in another group at one time.

– In our protocol, a member in a group may receive several messages from the
different members in another group at one time.

– The total message transferred in one round is O(k) and the total bits trans-
ferred in one round is O(k2(l + L)) + O(kl) = O(k2(l + L)).

In our protocol, if all the members in the group perform the protocol correctly,
the protocol may transfer the message msg of a group member to a member
in another group. In the future research, we will focus on how to detect the
cheater in the group. Otherwise, in each group, there is a group leader served
as a centralized host. In the future research, we are looking into techniques for
distributing the data and signatories in a decentralized way (see [13, 18]).
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Abstract. Encapsulating messages in onions is one of the major techniques pro-
viding anonymous communication in computer networks. To some extent, it pro-
vides security against traffic analysis by a passive adversary. However, it can be
highly vulnerable to attacks by an active adversary. For instance, the adversary
may perform a simple so–called repetitive attack: a malicious server sends the
same massage twice, then the adversary traces places where the same message ap-
pears twice – revealing the route of the original message. A repetitive attack was
examined for mix–networks. However, none of the countermeasures designed is
suitable for onion–routing.
In this paper we propose an “onion-like” encoding design based on universal re-
encryption. The onions constructed in this way can be used in a protocol that
achieves the same goals as the classical onions, however, at the same time we
achieve immunity against a repetitive attack. Even if an adversary disturbs com-
munication and prevents processing a message somewhere on the onion path,
it is easy to identify the malicious server performing the attack and provide an
evidence of its illegal behavior.

Keywords: anonymous communication, unlinkability, onion, universal re-en-
cryption, repetitive attack

1 Introduction

1.1 Anonymous Communication

Providing anonymous communication in public networks is a problem of growing im-
portance. Demands for anonymity emerge both in the personal sphere and in e-com-
merce. In recent years a lot of papers about safe (or even provably anonymous) com-
munication have appeared. Many protocols have been proposed – the most significant
ones are DC-networks and MIX networks introduced by David Chaum [4, 3]. Later
Rackoff and Simon proposed a fairly practical scheme providing anonymity based on
an idea of Chaumian MIXes [14]. That was the first time when onions were explicitly
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used however, not under this name. This scheme was examined in details [13, 11] in
different adversary models.

The idea of onions was used in a number of protocols, e.g. Babel [12] – a protocol
aimed at anonymous email transfer, or Onion Routing protocol [7–9] – a protocol in
which the connection between two peers is established via an anonymous path: servers
on the path get information only on immediate predecessors and successors on the path.
Recently, Fairbrother [6] has proposed a scheme based on onions for sending long mes-
sages (however, the scheme has turned out to be insecure). The onion mechanism is
used also in TOR protocol (the second generation onion routing) [5] as one of the basic
building blocks.

1.2 Active Attacks – Repetitive Attack

In many papers (i.e. [14]) it is assumed that an adversary can only eavesdrop the net-
work and observe messages coming in and out of the servers, but cannot decode the
packets, initiate new messages and/or destroy the old ones. While the assumption about
an inability to read messages can be easily fulfilled using encryption techniques, pre-
venting creation or deletion of messages is extremely difficult (for obvious reasons we
cannot rely on the mechanisms such as PKI.)

If an adversary is given the possibility to send new messages of his choice, he can
often compromise anonymity in the system. In order to trace the route of any given
message it suffices to send it again, and search for double occurrences of identical mes-
sages, which shall ultimately reveal the identity of the final recipient. This attack is
called a “repetitive attack”: it was proposed to compromise mix-networks ([3].) In that
case the problem is well studied and resolved: to avoid such an attack several solu-
tions have been suggested. Unfortunately, these methods might be inadequate for the
protection of the onion communication protocols.

In Onion–Routing a repetitive attack is always effective when an adversary controls
all links between servers and no precautions have been used.

1.3 New Results

In this paper we propose a new simple encoding scheme of “onions” immune against
a repetitive attack and similar attacks leading to tracing messages. We call them URE-
onions, since our solution is based on an extension of Universal–Re-Encryption by
Golle, Jakobsson, Juels and Syverson described in [10]. By using this technique we
are fairly able to limit the possibility of a repetitive attack – if a message is sent for the
second time, it is re-encrypted at random at each point of the path. Therefore, the ad-
versary cannot detect any repetition. Moreover, in the case when a server inserts faults
into messages transmitted, it can be detected with an overwhelming probability and the
evidence can be provided easily.

The new way of encoding the onions does not solve the problems that arise due
to the traffic analysis of dynamic connections based on onions – these problems are
a major issue for anonymous communication protocols – but it seems no encoding
scheme can solve them.
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2 Onions and Their Weaknesses

2.1 Onion Encoding

The goal of the onions is to protect communication so that the recipients and the sender
cannot be linked by an adversary analyzing the network traffic. In the scheme we con-
sider a network consisting of n servers. We assume that each server can communicate
directly with other servers (like in P2P networks.)

Each server has a public and a private key, all public keys are widely accessible.
The simplest version of the onion protocol looks as follows: in order to send a message
m to server D, server S chooses intermediate servers at random, say J1, . . . , Jλ, and
then encodes m as an onion (EncX means encryption with the public key of X):

EncJ1(EncJ2(. . . (EncJλ
(EncD(m), D), Jλ) . . .), J3), J2) .

This onion is sent by S to J1. Node J1 decrypts the message – the plaintext obtained
consists of two parts: the second one is J2, the first one is an onion with one layer peeled
off:

EncJ2(. . . (EncJλ
(EncD(m), D), Jλ) . . .), J3) .

Then J1 sends this onion to J2. Nodes J2, . . . , Jλ work similarly, the onion is “peeled
off” until it finally arrives at D.

The general idea is that a server processing an onion (and an adversary tracing
the traffic) cannot read the content of an onion, only the consecutive decoding with
appropriate private keys gives each intermediate server sufficient information to route
the message.

In fact, additional countermeasures must be taken to avoid some simple attacks (see
for instance [3]):

– For an outgoing sub-onion O sent by server Ji, an adversary may attach “Ji” to
O, encrypt the result with the public key of Ji, and compare the result with the
messages received by Ji a step before to find out the source of O. One can prevent
such an attack by attaching a random string at every layer of an onion or by using
a probabilistic encryption scheme.

– The length of the onions should be fixed (otherwise the size could reveal the route
of a message); some kind of padding can be used to cope with this problem.

The onion protocol acts similarly to a network of mixes: if two onions enter the same
(honest) server simultaneously, an adversary cannot determine the relation between in-
coming and outgoing onions. Determining the number of rounds necessary for the pro-
tocol to ensure anonymity in this way is a challenging problem. Some discussion on the
topic can be found in [14, 1, 11].

2.2 Adversary Model

The goal of an adversary might be a communication interruption and/or an unauthorized
access to information. Our concern here is an anonymity breach, that is linking the
senders and recipients of encoded messages in an anonymous communication protocol.
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In many papers only passive adversaries are considered: they can observe (eavesdrop)
some communication links and servers, but cannot interfere with the traffic in any way.
Unfortunately, in a real world, this assumption is often too strong, e.g. in a typical
Ethernet network sending packets without authorization is relatively very easy. Such
“pirate” packets, geared at confusing legitimate parties of the protocol, may even appear
to be sent according to the original protocol.

In our paper we assume that an adversary controls all links and some servers. This is
quite a pessimistic model. Moreover, the adversary is “global,” which means he always
has the knowledge of all corrupted system components and can use them arbitrarily. In
particular he has an access to all the private keys of controlled servers.

2.3 Repetitive Attack for Onions

The goal is to establish a connection between the sender and the recipient of a message.
To carry out this attack an adversary sends a traced message twice from a controlled
server and then observes the traffic on all links. When a certain message show up twice
somewhere, it could be the message duplicated by the adversary (partially decoded
according to the onion protocol). Then an adversary can immediately see the route of
the message. An adversary can also send a copy of a message any time later and trace
its route by comparing traffic in controlled links when the original message and its copy
were sent.

2.4 Ways to Protect Against Repetitive Attack

In the case of onions, invariant elements are the onions that have to be sent further and
the random strings (included in the onion to cope with the attack that was mentioned at
the end of Section 2.1.) Unfortunately, we cannot remove the random strings or recode
all layers of the onion simultaneously – at least for the classical onions. The reason is
that such a recoding procedure should be performed without the knowledge of public
keys, and certainly must be performed without the knowledge of private keys. More-
over, re-coding should be performed on internal parts of an onion, while on the other
hand an intermediate server has no access to the internal parts of the onion processed.
In fact, this is a fundamental feature of the encoding scheme.

For mixing networks there are some simple countermeasures against a repetitive
attack. The first one requires the sender to prove his knowledge of what he is sending;
obviously, since the layers are peeled off one by one, and we do not want to disclose
their contents in any way, such a proof is not possible directly in the case of onions.

The second countermeasure is discarding any duplicate messages. Unfortunately,
since an adversary may re-send a message at any later time, this would require from
every server a lot of space for storing all traffic (or at least some fingerprints) that
passes through it. There would also be a time overhead in processing the traffic – each
single onion would be checked for re-occurrence. Perhaps the most worrying aspect is
that recording traffic by servers would make eavesdropping much easier than before –
coping the records could be much easier.

The second technique can be enhanced by appending to each package some infor-
mation about the intervals of time when it should arrive at subsequent servers. In this
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solution packages “out of date” are simply discarded, so the servers can collect data
from a short period of time only. This approach presented in [2] demands quite precise
synchronization of time (otherwise one can mount an attack based on observing which
messages get discarded).

MIX-networks work in “rounds.” In such systems we can propose to change keys
or parameters in order to make a repetitive attack impossible. Unfortunately, it is not
a practical solution for distributed communication systems which have to work contin-
uously.

Handshake based solutions, like the one used in TOR protocol, have a disadvantage
of a large latency and bidirectional communication.

3 Onions Based on Universal Re-encryption

3.1 Universal Re-encryption

Let us recall El-Gamal encryption scheme: p is an appropriate prime number (with
a hard discrete logarithm problem), g is a generator of Z∗

p, a random, nonzero x < p−1
is the private key, the corresponding public key is y, where y = gx mod p. A message
m < p is encrypted in the following way. First a number k, 0 < k < p− 1, is chosen
uniformly at random. Then we put r := gk mod p and s = m · yk mod p. The pair
(s, r) is a ciphertext of m.

The El-Gamal cryptosystem has a very useful property: the same message encrypted
for the second time yields a different ciphertext. Moreover, given two ciphertexts, it is
impossible to say whether they were encrypted under the same key (unless, of course,
the decryption key is given). This property is called key-privacy (see [10]). El-Gamal
cryptosystem has yet another interesting feature. Everyone can re-encrypt a ciphertext
(α, β) so that any relation between the old and the new ciphertext (α′, β′) is hidden
for the observer not equipped with the decryption key. Namely, if y is the public key
used for ciphertext creation, one can choose k′ at random and set α′ := α · yk′

mod p,
β′ := β · gk′

mod p. Obviously, (α′, β′) is a ciphertext of the same plaintext as before,
but both its parts are “blinded” by random factors yk′

and gk′
.

It is an astonishing feature that the above re-encryption trick can be modified slightly
so that the public key does not need to be known ([10]): the inventors of the scheme,
Golle, Jakobsson, Juels and Syverson, call it universal re-encryption, or URE for short.
The scheme looks as follows:

– Preliminaries. A cyclic group G is chosen such that the discrete logarithm problem
is computationally hard (e.g. Z

∗
p for an appropriate prime number p). An arbitrary

generator of G (say g) is chosen. Then G and g are published.
– Key Setup. Alice chooses a private key x at random; then the corresponding public

key y is computed as y = gx.
– Encryption. To encrypt message m for Alice, Bob generates numbers 0 < k0, k1 <
|G| uniformly at random. Then, the ciphertext of m is computed as a quadruple:

(α0, β0; α1, β1) :=
(
m · yk0 , gk0 ; yk1 , gk1

)
In fact, this is an El-Gamal encryption made twice: the encrypted messages are m
and 1, respectively.
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– Decryption. Alice computes

m0 :=
α0

βx
0

and m1 :=
α1

βx
1

,

and accepts message m = m0 , if and only if m1 = 1.
– Re-encryption. Random values k′

0 and k′
1 are chosen. Re-encrypted message is

described by the following formula:(
α0 · αk′

0
1 , β0 · βk′

0
1 ; αk′

1
1 , β

k′
1

1

)
.

During re-encryption all four components of a ciphertext change in a provably secure
way (see [10]).

3.2 Extension of Universal Re-encryption

Let us assume that we have chosen a path of λ servers. We would like to encrypt a mes-
sage so that it must be processed by the servers from the path and according to the order
on the path. Simultaneously, we would like to retain the outstanding features of regular
URE.

– Key Setup. Let xi be the private key of the ith server (1 ≤ i ≤ λ). Let yi = gxi

be the corresponding public key; yi is published. Obviously each server determines
his keys on its own and does not need to cooperate with others in this phase.

– Encryption. To encrypt a message m, two random values k0 and k1 are generated.
The ciphertext has the following form:

Ex1,x2,...,xλ
(m) = (α0, β0; α1, β1) =

=
(
m · (y1y2 . . . yλ)k0 , gk0 ; (y1y2 . . . yλ)k1 , gk1

)
Hence,

Ex1,x2,...,xλ
(m) =

⎛⎝m · g
k0·

λ∑
i=1

xi

, gk0 ; g
k1·

λ∑
i=1

xi

, gk1

⎞⎠ .

So Ex1,...,xλ
(m) is a ciphertext with decryption key

∑λ
i=1 xi, and therefore it can

be re-encrypted in the usual way. At any moment such a ciphertext can be partially
decrypted. For instance, the first server can do it as follows:

Ex2,...,xλ
(m) =

(
α0

βx1
0

, β0;
α1

βx1
1

, β1

)
It is obvious that it is still a correct URE ciphertext with decryption key

∑λ
i=2 xi, and

therefore it can also be re-encrypted as it was mentioned above.
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4 Modified Onion Protocol

In this section we show how to introduce non-determinism into processing of onions.
For this purpose we modify the encoding used and propose so called URE-onions. We
use a notation similar to those used in the previous section. Let xi denote a secret
key of server Si; the corresponding public key yi = gxi is widely known. Also, g is
a public parameter, it is a generator of a group such that finding discrete logarithms is
computationally hard. Let Ex(m) denote a ciphertext of a message m obtained with a
public key corresponding to x according to schema of Golle et al.

As a first step, a random path of servers is chosen: Si1 , Si2 , . . . , Siλ
. Then a URE-

onion consists of λ ciphertexts, called blocks. The jth block, for 1 ≤ j ≤ λ− 1, has the
form:

Exi1+···+xij
(“send to Sij+1”)

The last block has the form
Exi1+···+xiλ

(m)

The main difference between URE-onions and the classical onions is that we de-
viate from the original encapsulation idea: the messages for different routing steps are
included in separate ciphertexts.

Another feature that differs this approach from the classical one is that we exclude
any random contents from the intermediate messages. Obviously, random strings in-
cluded in a message would betray duplication of messages and hence also some in-
formation on the route. The general rule is that auxiliary messages may contain only
information that could be available for an adversary analyzing the traffic.

4.1 Routing

First, all blocks described above are sent together to server Si1 . When a server Sj

receives a URE-onion, it partially decrypts, re-encrypts, and changes the order of its
blocks:

Partial Decryption Phase: each block (α0, β0; α1, β1) is replaced by

Dxj

(
Exj (mi)

)
=
(

α0

(β0)xj
, β0;

α1

(β1)xj
, β1

)
.

Re-encryption Phase: now Sj re-encrypts each block. So in place of the original block
(α0, β0; α1, β1) we obtain for some randomly chosen k1, k2:(

α0

(β0)xj
·
(

α1

(β1)xj

)k1

, β0 · (β1)k1 ;
(

α1

(β1)xj

)k2

, (β1)k2

)
.

Permutating Phase: All blocks are permuted at random.

After the decryption phase, exactly one block should contain the next destination S,
unless the URE-onion has reached its target. It is easy to notice that the length of the
URE-onion remains fixed and the server processing a URE-onion cannot say how many
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hops remain. Also, re-encryption guarantees that the address of S, the next server on
the route, remains hidden for all servers except Sj .

At the next step the URE-onion is sent to the destination S retrieved from a block
at a partial decryption phase.

4.2 Immunity Against Repetitive Attack

Let us argue shortly why a repetitive attack does not work for the proposed protocol.
Assume that there is at least one honest server “on the path” between two malicious
servers controlled by an adversary. Then the adversary cannot detect the repetition of
an onion, since the honest server re-encrypts each onion processed at random.

We have also eliminated all the information available for intermediate servers ex-
cept the next destination. Sending a URE-onion multiple times would only increase the
number of URE-onions with message “send to Si,” and so an adversary can only hope
to provide additional data to the traffic analysis, which is not our concern here. Note
that a URE-onion provides no more data for the traffic analysis than the regular onions.

4.3 Attempts to Change the Route

Since the blocks on a URE-onion are given, a malicious server can reorder them, elim-
inate some of them, or inject its own blocks:

Reordering: Since at each phase (except the last one) there is exactly one block that
represents a valid server name, the order of the blocks is irrelevant. This has no
effect on the protocol security.

Inserting Own Blocks: certainly, one can inject a number of blocks encoding initial
servers on a path. This is possible, since encoding is based on public keys only.
Then the URE-onion will be routed through such a “detour”. The problem is that if
at least one server on this detour is honest and performs partial decryption then the
original blocks will be partially decrypted unnecessarily. Consequently, the blocks
of the original URE-onion become unreadable. If the additional blocks are inserted
somewhere in the middle then the processing will go on until the first inserted block
is encountered. Then the inserted block will be unreadable as well due to partial
decryptions that have occurred in between.

Removing a Block: if a block is removed then at some point some server, say Sij will
not find the ciphertext

Exij
(“send to Sij+1”)

in the delivered blocks. Certainly, the server Sij cannot find the next server on the
path so it must stop processing this URE-onion. Potentially an adversary can also
remove some blocks and then insert new ones. We address this problem in the next
subsections.

Modification of a Block: in fact, it is possible to change the contents of a block with-
out decrypting it. We also discuss this problem in the next subsection.
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4.4 Multiplicative Attack

An adversary can carry out an a bit more sophisticated attack than a repetitive attack.
We call it a “multiplicative attack.”

Let a URE-onion contain blocks Eki(mi) for i ≤ λ. Each of them, except a single
one, is dedicated to a particular server and keeps information about its successor on the
path. Let

Eki(mi) = (α0, β0; α1, β1) = (mi · yk0 , gk0 ; yk1 , gk1)
A malicious server processing the URE-onion can choose some block blindly, say the
block Eki(mi) = (α0, β0; α1, β1), and replace α0 by α0 · γ for an arbitrary γ. In such
a situation one of the further servers on the path obtains γ · mi instead of mi. If this
server is also under the adversary’s control, it knows the value γ so it can easily recover
the value mi and can carry on the protocol. If this server is not under control of the
adversary, then mi remains scrambled and the server finds that the address decoded is
faulty.

During the attack described an adversary can manage to get some information about
an onion path. However, if the first of the attacking servers misses an opportunity to
disturb a proper block, the URE-onion will not be delivered to the final destination.
So the multiplicative attack is less efficient than the repetitive attack for the regular
onion protocol, but it is still unacceptable. For this reason we propose an “investigation”
subprotocol to defend the scheme against the mentioned attack.

4.5 Investigation – Finding Out Dishonest Servers

If an honest server obtains an invalid URE-onion (i.e. none of blocks or more than one
decrypted block represent the name of the next server on the route or a valid message) it
can complain about the previous server from the path. In such a situation both servers –
the previous server as well as the complaining one – must prove that they have behaved
correctly, otherwise one of them is recognized guilty. If they manage to prove their
compliance with the protocol, the next predecessor on the path is interrogated. The
procedure is repeated until a cheater is detected. The main goal is to build an appropriate
procedure for verifying a server. We assume that each server knows from whom it gets
each packet and that it can prove it to other servers. The evidence might come for
instance from the signed hash values of the traffic transmitted.

Let us consider a single server Sj from the path. It has a private key xj such that
yj = gxj . Each block (α0, β0; α1, β1) of the URE-onion should be processed by Sj in
two phases – a partial decryption phase and a re-encryption phase. Assume also that Sj

is asked to prove its honest behaviour. It must show that the URE-onion obtained from
(α0, β0; α1, β1) through the partial decryption and re-encryption is correctly built i.e. it
has the form:

(α̂0, β̂0; α̂1, β̂1) =

(
α0

(β0)xj

(
α1

(β1)xj

)k1

, β0(β1)k1 ;
(

α1

(β1)xj

)k2

, (β1)k2

)
for some randomly chosen k1, k2. For verification, the numbers k1 and k2 are revealed,
as well as

(α′
0, β0; α′

1, β1) =
(

α0

(β0)xj
, β0;

α1

(β1)xj
, β1

)
.
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but of course xj must remain secret. The re-encryption phase can be checked in a
straightforward way. For examining partial decryption we use a zero-knowledge pro-
tocol for showing the equality of discrete logarithms[15]: recall that the aim of a pro-
tocol called EQDL(A, B, C; a, b, c) is to prove that there is a number x such that
A = ax, B = bx, C = cx. So the server proving its behaviour presents a proof

EQDL(α0/α′
0, α1/α′

1, yj ; β0, β1, g) .

Since yj = gxj the proof should convince that α0/α′
0 = β

xj

0 and α1/α′
1 = β

xj

1 which
was our goal.

Let us note that the EQDL proof scheme is not really interactive, so it is better suited
for showing honesty afterwards.

A server is immediately rejected from the protocol if it fails to prove its correct
behaviour. The only drawback of this method is the necessity of storing all random
parameters that have been used by re-encryption (or ability to reconstruct them from
a random seed). Fortunately, the time of storing them can be limited to some time bound
within which an onion normally reaches its target.

5 Concluding Remarks

Thanks to Universal Re-Encryption scheme URE-onions are immune to a repetitive
attack. Any attempt of a multiplicative attack can be detected with a probability propor-
tional to the ratio of honest servers in the whole network. Also changing a block leads
to detection of a dishonest server with a significant probability so active tracing of an
URE-onion becomes a very risky business. Moreover, URE-onions do not require ad-
ditional interaction except for the case of “cheating investigation,” and even in this case
the interaction is kept minimal. Of course the described scheme does not automatically
ensure security against all theoretically possible active attacks.

The new onions might be more expensive than the original ones regarding process-
ing time: each server must perform λ decryptions of λ blocks instead of one decryption
of a large block, as it happens for the regular onion protocol.

A serious disadvantage is that an URE-onion cannot be combined with symmetric
encryption in the same way as it can be done for regular onions. So it might be suited
for small (e.g. control) messages only. On the other hand, URE-onions offer much more
flexibility that can be used for diverse purposes.
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Abstract. The Korea standard block cipher, SEED, is a 128-bit sym-
metric block cipher with a more complex F function than DES. This
paper shows that SEED is vulnerable to two types of side channel at-
tacks, a fault analysis attack and a power analysis attack. The first one
is a fault insertion analysis which induces permanent faults on the whole
left register of 15-round. This attack allows one to obtain the secret
key by using only two faulty cipher texts for encryption and decryption
processing respectively. The second attack is a more realistic differential
power analysis. This attack requires about 1000 power traces to find the
full secret key. The above two attacks use a reverse property of the F
function to obtain secret key, where the reverse property is derived from
the our research.

Keywords: Side channel attack, Fault insertion analysis, Differential
power analysis, block cipher, SEED.

1 Introduction

In September 1996, Boneh et al. announced a new cryptanalytic attack which
could affect security of cryptographic modules [6]. They succeeded in breaking
the RSA with CRT by using one correct signature and one faulty one. In this
attack, hardware faults and errors which occur during the operations of a cryp-
tographic device might leak information about the private key. Lenstra et al.
improved this attack by finding two secret prime number using only one faulty
signature of a message [15, 19]. Consequently, many papers have been published
concerning the resistance of RSA cryptosystems with CRT to fault attacks [2,
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26, 27]. Also the fault attack by optical illumination [23] or by spike genera-
tor [2] has been reported and is much more feasible and potential for breaking
cryptosystems.

In addition, Biham and Shamir have published a paper [4] detailing a fault
analysis attack which is applicable to secret key cryptosystems such as Data
Encryption Standard (DES). Assuming the same register faults that Boneh et
al. considered [6], they showed that DES could be broken. They combined two
attack techniques differential cryptanalysis [3] and fault analysis. Dusart et al.
showed how DFA (Differential Fault Analysis) works on Advanced Encryption
Standard (AES) [9]. They implemented this attack on a PC, then found the
full AES-128 key by analyzing less than 50 cipher texts. In 2002, Giraud also
presented a paper describing two types of DFA attacks on AES [11] using between
50 and 250 faulty cipher texts.

On the other hand, Kocher et al. [17] firstly introduced power attacks in-
cluding the simple and differential power analyses (referred to as SPA and DPA,
respectively). In SPA, a single power consumption of a cryptographic execution
is measured and a trace is analyzed to classify operations which are related to
secret information. In DPA, an adversary measures hundreds of power signal
traces, divides them into two groups using a classification criterion, and makes
a differential computation between the two averaged values. Since the averaging
and subtraction of two signal groups results in the amplification of small power
differences which occur during the execution of an algorithm. In general, DPA is
more powerful than SPA [7, 12, 25]. In fact, it has been reported that secret key
cryptosystems (AES and DES) as well as public key cryptosystems (RSA and
ECC) are vulnerable to DPA [5, 17, 20, 21].

In this paper, we show that the SEED which is a national industrial associa-
tion standard algorithm in Korea (TTAS.KO-12.0004, 1999) and an international
standard candidate for ISO/IEC SC27 CD 18033-3 [14, 18] is vulnerable to both
fault attack and power attack. This paper is mostly divided in two parts. In the
first part, the SEED is vulnerable to a fault insertion analysis which induces
permanent faults on a whole left register of 15-round. This attack allows us to
obtain the secret key by using only two faulty cipher texts for encryption and
decryption processing respectively. The first reason having vulnerable property
is that F function of SEED is recoverable, that is, if input and output are known,
then adversary can find round key. The second reason is that if 1-round and 16-
round key are known, then he can completely find full secret key. In the second
part, the SEED is also vulnerable to a DPA. By using this attack, we can get
a output value of a F function of 1-round during a decryption processing. The
rest of this attack is similar to fault attack. This paper shows our experimental
results of DPA on SEED.

This paper is organized as follows. In section 2, we give a brief overview of
SEED. In section 3, we present our fault analysis, including our assumptions and
the theory behind the attack. Section 4 shows the DPA method on SEED and our
experimental results. Finally in section 5 we briefly discuss the countermeasure
against the two types of attack on SEED and make a conclusion.
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2 SEED Algorithm

The Korea standard block cipher, SEED is a secret key block cipher with a 128-
bit data block and a 128-bit secret key. This algorithm has a Feistel structure
with 16 rounds and a 128-bit input-output data block. The following notations
are used throughout this paper.

� : addition in modular 232

� : subtraction in modular 232

⊕ : bitwise exclusive OR(XOR)
& : bitwise AND
<< n : left circular rotation by n bits
>> n : right circular rotation by n bits
‖ : concatenation

2.1 Structure of SEED

A input plain text of a 128-bits is divided into two 64-bit blocks. The right 64-bit
block R0 is an input to the F function with a first 64-bit round subkey which is
generated from the round key generation processing. The output of F function is
XORed with the left 64-bit block L0. After 16 round encryption processings, the
final 128-bit output is a cipher text. The overview of SEED structure is shown
in Figure 1.

L0 R0

F

K1

L1 R1

F

K2

L15 R15

F

K16

L16 R16

Ki = Ki,0 || Ki,1

i-round key

Fig. 1. Structure of SEED.
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The F function also has a 64-bit Feistel structure. The input block is divided
into two blocks (C, D) and XORed with two 32-bit subkeys (Ki,0, Ki,1). After
mixing subkeys, two blocks are passed through three layers of G function with
addition in modular 232. The structure of F function is shown in Figure 2.

G

+

G

+

G+

Ki,0 Ki,1

C D

C` D`

Fig. 2. The F function.

As shown in Figure 3, the G function used in F function has two security
layers. The first layer consists of two S-boxes generated from boolean functions
X247 and X251. Here, S boxes can be represented by two lookup tables. The 32-
bit input of G function is divided into 4 blocks. Each 8-bit block pass through the
8 × 8 S-boxes, S2 and S1. The second layer consists of permutation processing
of S-box outputs which is a computation by AND operation with four specific
values from m0 to m3. After XOR processing of expanded 16 blocks, G function
generates a final 32-bit output.

Y3 = S2(X3), Y2 = S1(X2), Y1 = S2(X1), Y0 = S1(X0),
Z3 = (Y0&m3)⊕ (Y1&m0)⊕ (Y2&m1)⊕ (Y3&m2),
Z2 = (Y0&m2)⊕ (Y1&m3)⊕ (Y2&m0)⊕ (Y3&m1),
Z1 = (Y0&m1)⊕ (Y1&m2)⊕ (Y2&m3)⊕ (Y3&m0),
Z0 = (Y0&m0)⊕ (Y1&m1)⊕ (Y2&m2)⊕ (Y3&m3).

2.2 Round Key Generation

The round key generation function uses the G function, addition in modular
232, subtraction in modular 232, and left (right) circular rotation by 8 bits.
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X3 X2 X1 X0

S2 S1 S2 S1

Z3 Z2 Z1 Z0

&m3 &m2 &m1 &m0 &m3 &m2 &m1 &m0 &m3 &m2 &m1 &m0 &m3 &m2 &m1 &m0

Fig. 3. The G function.

A 128-bit input key is separated into four 32-bit blocks (A, B, C, D). The two
divided blocks perform addition (or subtraction) in modular 232 and subtraction
(addition) by the constant KC1. The 1-round keys K1,0 and K1,1 are generated
using final G function operations. After an 8-bit right rotation of the left 64-bits
the second round keys K2,0 and K2,1 are generated by addition, subtraction by
the constant KC2, and G functions. The rest of the subkeys are generated in
the same way, as shown in Figure 4.

3 Fault Analysis Attack on SEED

On a smart card, a fault may be induced in many ways, such as by a power glitch,
by a clock pulse, or by radiation from a laser, etc. In this paper, the fault attack
assumes that the permanent fault occurs on whole bit of a register. This attack
is similar to one of two assumptions made by Biham and Shamir in fault attack
for DES [4]. The other fault attack assumption is difficult to apply to our fault
attack and is difficult to implement experimentally. One criticism against this
second model, a differential fault analysis attack, is that the transient fault attack
assumed by Biham and Shamir [4] is not realistic. Therefore, we assume a more
practical fault model that will be less controversial. Our fault attack assumes
that we can cut a wire or destroy a memory cell in a cryptoprocessor such as
a smart card. As a result, the values in affected location can be considered to
be permanently fixed. We assume that an adversary can insert these permanent
faulty values into some memory cells. Some papers make similar assumptions in
their work [1, 4, 22].

3.1 Fault Analysis Attack

We assume that SEED is implemented in hardware as 16 unrolled hardware
rounds. For this attack, it suffices to destroy all the bits of the LSB of register L15
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Fig. 4. Round key generation.

or set them to known values. This attack assumes that we can destroy a memory
cell in a register or cut a wire. As a result, we consider the memory cells to be
fixed to known values. This attack is a pure cipher text only attack, which does
not require any information about plain texts. Based upon this assumption, we
can find the 16-round keys, K16,0 and K16,1. The 16-round in the implementation
of SEED is shown in Figure 5.

Our attack to find out the 16-round subkeys is composed of 4 steps as follows.

Step 1
We induce the faults to destroy all the bits of the LSB register L15 or set
them to known values. In addition, we can see the final output of SEED, L16

and R16. Therefore, we can find the input and outputs of the F function. In
the end, we want to find the 16-round keys K16,0 and K16,1 when we know
the input and output of the F function.

Step 2
Given that inputs and outputs in F function of Figure 2 (C, D, C′, and D′)
are known, we want to find the keys K16,0 and K16,1. As for the addition in
modular 232, the inverse operation is subtraction in the same modular. So,
based on the assumption that the output of G function is known, if we can
find the input of it, we safely say that we can extract the 16-round keys.
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L15 R15

F

K16

L16 R16

Fig. 5. 16-round of SEED.

Step 3
Let us attempt to find the inputs of G function given the outputs. In Figure
3, we denote the 32-bit inputs as X0, X1, X2 and X3, and the outputs as Z0,
Z1, Z2 and Z3. It is enough to know the inverse values of function S by S-
box tables S1 and S2. Consequently, the outputs of S-boxes are the result of
S2(X3)||S1(X2)||S2(X1)||S1(X0). An important point to emphasize is that
the least significant bits Z00, Z10 , Z20 and Z30 are determined by 4 bit inputs
S20(X3)||S10(X2)||S20(X1)||S10(X0). Here, Zij is a jth bit of Zi. By selecting
8 out of 16 inputs combined by S20(X3), S10(X2), S20(X1), and S10(X0)
we can calculate the correct output bit Z00. Similarly, by selecting 4 out
of 8 inputs to check bit Z00, we can calculate the correct output bit Z10

and by selecting 2 out of 4 inputs to check Z10 bit, we can calculate the
correct output bit Z20. Finally, by selecting 1 out of 2 inputs to check bit
Z20, we can calculate the correct output bit Z30. As a result, if we know
the outputs of the G function, then we can compute its inputs, that is, the
G function becomes reversible; there is a reverse computational method to
find the inputs for given outputs. We will use the notation G−1 function to
represent this inverse computational algorithm for G function.

Step 4
We know the inverse method for a G function and the addition function in
modular 232. Therefore, the reverse computation for a F function shown in
Figure 2 is possible. Finally, given the input and output of F function, we
can find the 16-round keys, K16,0 and K16,1.

3.2 Secret Key Attack Using Two Round Keys

After fault insertion at 16-round for encryption of plain text, we can calculate
16-round keys by using the final cipher text. Additionally, after fault insertion at
16-round for decryption of the cipher text, we can compute 1-round keys using
the final plain text. Note that it is not necessary to use a genuine cipher text as
an input. It is sufficient to use random data as an input because an adversary is
only interested in the decryption operation.

Now, let us examine how to search the 128-bit secret key given a 1-round
and a 16-round keys. As you see in Figure 4, a 128-bit input key is divided
into four 32-bit blocks, and then used to generate a 64-bit round key at each
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round. The round key generation algorithm uses four computational operations:
circular rotation by 8 bits, addition (subtraction) in modular 232 and G function.
As has been noted, we can compute inverse values of function G and addition
(subtraction) in modular 232. Therefore, if we know the 1-round keys K1,0 and
K1,1 in Figure 4, then we know two temporary values (A + C) and (B −D) as
follows.

A + C = G−1(K1,0) + KC1 = T1,0

B −D = G−1(K1,1)−KC1 = T1,1

A3||A2||A1||A0 + C3||C2||C1||C0 = T1,0

B3||B2||B1||B0 −D3||D2||D1||D0 = T1,1

Note that the A and B used in 16-round key generation are the same that
were used in 1-round due to 8 right circular rotations by 8 bits. Furthermore, C
and D used in the 16-round key generation are the same that operated by only
one right circular rotations by 8 bits for 1-round C and D.

A + L((C||D) >> 8) = G−1(K16,0) + KC16 =T16,0

B −R((C||D) >> 8) = G−1(K16,1) + KC16 =T16,1

A3||A2||A1||A0 + D0||C3||C2||C1 =T16,0

B3||B2||B1||B0 − C0||D3||D2||D1 =T16,1

Here, L( ) means the extraction of the left 32 bits from 64 bits data and
R( ) means right extraction. In order to compute the secret key, we subtract two
equations as follows.

T16,1 − T1,1 = D3||D2||D1||D0 − C0||D3||D2||D1

T1,0 − T16,0 = C3||C2||C1||C0 −D0||C3||C2||C1

As you know, if C and D are known, then A and B can easily be computed.
Figure 6 describes the operation to subtract two temporary round keys. As shown
in Figure 6, knowing T16,1 − T1,1 and T1,0 − T16,0, we can compute 256 possible
secret keys. Now, let D0 be a random 8 bit value. Then we can compute D1 as
D0 − R7−0(T16,1 − T1,1) where R7−0(K) denotes the bits from the LSB to the
7th bit of K. Consecutively, we can compute D2 from D1 −R15−8(T16,1 − T1,1)
as follows.

D1 = D0 −R7−0(T16,1 − T1,1)
D2 = D1 −R15−8(T16,1 − T1,1)
D3 = D2 −R23−16(T16,1 − T1,1)
C0 = D3 −R31−24(T16,1 − T1,1)
C1 = C0 −R7−0(T1,0 − T16,0)
C2 = C1 −R15−8(T1,0 − T16,0)
C3 = C2 −R23−16(T1,0 − T16,0)
D0 = C3 −R31−24(T1,0 − T16,0)
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Note that D0 used to compute D1 = (D0 −R7−0(T16,1 − T1,1)) is same with
the final value C3 − R31−24(T1,0 − T16,0). Finally, we can compute 256 C and
D from 256 D0. If 256 C and D are known, then 256 A and B can simply be
computed. These 256 secret keys can always generate secret keys which satisfy
the relationship between 1-round and 16-round keys. The final step to find a
complete secret key is to do an exhaustive search of the 256 possible secret
keys. Known plain text/cipher text pair (using the fault-inserted cipher text),
a computer can find the unique secret key satisfied the text-pair from the 256
possible secret keys by an exhaustive software search. Thus, we can find the
full secret key using only two faulty cipher texts, where one is the output for
encryption processing, and the other is for decryption processing.

We assume that SEED is implemented as a single round, which is used 16
times. This is an iterated hardware implementation of SEED. In this case we
generate a permanent fault in the left-half register, in which all of the bits are
permanently fixed. At this point, it doesn’t matter whether the value of the left-
half register is zero or known values. In iterated implementations, we can also
apply the proposed attack which can compute the 1-round and 16-round keys.

D3 D2 D1 D0

C0 D3 D2 D1

T16,1 - T1,1

C3 C2 C1 C0

D0 C3 C2 C1

T1,0 - T16,0

Fig. 6. Differential value between two temporary round keys.

4 Power Analysis Attack on SEED

Proposition 1. If both the input and output value of the F function in i-round
are known, i-round key can be computed using a reverse algorithm of the F
function.

DPA is a powerful attack in which an adversary collects a number of power
traces from a hardware device as it repeatedly executes a cryptographic opera-
tion. In our DPA attack, an adversary must have knowledge of inputs processed
by the device. Furthermore the same secret key is used in encryption (decryp-
tion) over multiple plain texts (cipher texts).

Our basic implementation of DPA is as follows. Assume that an adversary is
able to input two 64-bit plain texts R0 and L0, and measures power consumption
traces. Now, an adversary would like to attack the 1-round keys K1,0 and K1,1

as shown in Figure 7. Since the input and output of F function are known,
according to Proposition 1, he can extract the 1-round key.
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L0 R0

F

K1

L1 R1

63-bit random value
except one bit

Fixed value
for power attack

Fig. 7. The DPA attack in 1-round of SEED.

For example, we will find the least significant bit (LSB) of the output of F
function at the 1-round. First, the value of the right half input R0 is fixed during
attack processing. Then, the left half input L0 is randomly selected. We use a
left input value which sets the LSB of L0 to 0 or 1 and then measure the power
signal at register R1 during encryption processing. Let Tit be a sampled type
of the power consumed. The i index corresponds to the ith power signal and t
index corresponds to the time of the sample. Given the random L0, the Tit are
split into two sets according to the LSB of L0 as follows.

T0 = {Tit | LSB of L0 = 0}
T1 = {Tit | LSB of L0 = 1}

Let T0 be the set of measured traces where LSB is 0 and T1, the set where
LSB is 1. Both T0 and T1 will contain the same number of traces. Then we
compute the average of the partitioning traces as follows:

A0[t] =
1
|T0|

∑
Tit∈T0

Tit

A1[t] =
1
|T1|

∑
Tit∈T1

Tit

Here, the number of measurements in a trace, N = |T0| = |T1|, depends on
sampling rate and memory capacity. The differential trace of A0(t) and A1(t) is
defined for t = 1, ..., m as:

�[t] = A1[t]−A0[t]

lim
N→∞

�[t] = A1[t]−A0[t] =

{
0 if t = t∗

ε if t = t∗

Assume that the register R1 is stored at time t∗ and t is equal to t∗. If the
expected difference of power traces has a positive peak, ε > 0, then the LSB of
F function of the 1-round is 0 because the storing power consumption for bit “1”
is more than for bit “0”. Similarly, if the difference between power traces has a
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Fig. 8. Single power trace of an XOR operation which is L0 ⊕ 64-bit of F function.

negative peak ε < 0, then the LSB of F function of the 1-round is 1. So, we can
find the LSB bit of the output of F function at the 1-round. In addition, when t
is not equal to t∗, the power dissipation is independent of the LSB because the
smart card is manipulating bits other than the LSB.

We show that SEED is vulnerable to our DPA by an experimental result. Our
experiment was made on the 1-round implementation of SEED. Figure 8 shows a
single power trace of an XOR operation to find the output of F function. Figure
9 illustrates the average difference between A0(t) and A1(t), in which we know
whether the LSB of F function of the 1-round is 0 or 1. The signals in Figure 9
were obtained by averaging 5000 random power traces to observe a clear view
of peak, but we have also been able to mount this attack with only 1000 power
traces.

In our example, we have only discussed finding the LSB of F function at
the 1-round. However, by a similar partition method to other bit using above
measured traces, an adversary can steal all the bits of F function of the 1-round.
As an above result and Proposition 1, we can extract the 1-round key.

As mentioned above, if the 1-round key is vulnerable to DPA during the
encryption processing, then the 16-round key can also be revealed during de-
cryption. Therefore, an adversary can be compute a complete secret key from
the 1-round and 16-round keys. The rest of this attack is similar to the fault
attack described in section 3.2.

5 A Remark on Countermeasures and Conclusion

In this paper, we have shown that SEED is vulnerable to both a fault attack and
a power attack. The basic assumption of the two attacks is that we can induce the



422 HyungSo Yoo et al.

0 0.5 1 1.5 2 2.5 3

x 10
4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time [us/div]

V
ol

ta
ge

 [m
V

]

Threshold 

Threshold 

Negative peak

(a)

0 0.5 1 1.5 2 2.5 3

x 10
4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time [us/div]

V
ol

ta
ge

 [m
V

]

Threshold 

Threshold 

Positive peak

(b)

Fig. 9. Differential power traces. In the case (a), a negative peak is observed since the
LSB bit of F function is 1, while in the case (b), a positive peak is observed since the
LSB bit of F function is 0. We can make a decision about the threshold value by many
experiments.

output values of F function through the side channel attack techniques. Since F
function of SEED is recoverable if input and output are known, this assumption
is quite reasonable and realistic. To achieve the real attack, we demonstrated
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by power analysis experiment described in section 4. Our attacks is applicable
to other block ciphers with Feistel structure. Furthermore, if target cipher has
a recoverable properties for F function under our assumption, the round key is
easily extracted by an adversary. Unfortunately, the SEED has a weakness to
leak the full secret key by analyzing with only two round keys.

Countermeasures for resisting the fault insertion attacks can be implemented
using both hardware [16] and software methods to detect any intrusions by ex-
ternal voltage variations, external clock variations, and physical fault induction
attack. To defeat the power analysis, a power signal reduction technique, a self-
timed dual-rail method, a sense amplifier based logic, a non-deterministic pro-
cessor, etc., are needed [8, 10, 13, 24]. Implementers need to consider these side
channel attacks when designing secure smart card systems. It is also important
to prove the validity of some countermeasures not given in this paper.
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Abstract. In implementing cryptographic algorithms on limited devices
such as smart cards, speed and memory requirements had always pre-
sented a challenge. With the advent of side channel attacks, this task be-
came even more difficult because a programmer must take into account
countermeasures against such attacks, which often increases computa-
tional time, or memory requirements, or both.
In this paper we describe a new method for secure implementation of
the Advanced Encryption Standard algorithm. The method is based on
a data masking technique, which is the most widely used countermeasure
against power analysis and timing attacks at a software level. The change
of element representation allows us to achieve an efficient solution that
combines low memory requirements with high speed and resistance to
attacks.

1 Introduction

The symmetric block cipher Rijndael [4] was standardized by the National In-
stitute of Science and Technology (NIST) in November 2001, and will be used
in a large variety of applications, from mobile consumer products to high-end
servers. Consequently, the requirements and design criteria for AES implemen-
tations vary considerably.

Small footprint, stringent memory requirements, low power consumption and
high throughput used to be standard criteria for implementation of crypto-
graphic algorithms designated for smart cards and related embedded devices.
With the advent of side channel attacks, one of the major concerns is resistance
to such attacks.

The most general method to counter side channel attacks is to randomize
data that may leak through various side channels, such as power consumption
[10], electromagnetic radiation [17], or execution time [11]. The problem is to
guarantee that an attacker may obtain only random information, and thus cannot
gain any useful knowledge about the actual initial and/or intermediate data
involved in computations [12].

C.H. Lim and M. Yung (Eds.): WISA 2004, LNCS 3325, pp. 425–439, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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In the AES algorithm most operations work on bytes. To protect against
side channel attacks, every byte that appears as an intermediate result must
look random. However, this is not easy to achieve. The problem is that the algo-
rithm combines additive and multiplicative operations, which implies complex
transformations on masks [3, 7, 1]. Moreover, as it turned out, a straightforward
multiplicative mask [1] is not secure against so-called zero attack [6].

The main contribution of this paper is that we suggest a method that com-
bines a full protection against side channel attacks (including zero attack) with
low memory requirements and low computational costs. This became possible
due to a change of representation of field elements and using so called log-
and alog-tables [20, 16] for arithmetic computations in Galois fields directly on
masked data. To reinforce security, ideas of computations on masked tables [19]
were incorporated in our implementation.

The rest of the paper is organized as follows. After a brief description of the
Advanced Encryption Standard algorithm in the next chapter, we proceed in
Chapter 3 with details of a very efficient AES implementation based on a so-
called discrete logarithm representation of elements in GF (2n). The latter allows
us to reduce multiplication and inversion in Galois fields to table lookups and
simple integer arithmetic operations.

Chapters 4 and 5 discuss the difficulties of inversion on masked data (i.e.,
data that are obtained by XOR-ing every (i, j)-th byte of the state with a byte
of a random mask) and outline an efficient and secure method of inversion using
masked log/alog lookup tables.

The paper is concluded with the the summary of the novel secure AES soft-
ware implementation suitable for even the most limited smart cards and other
embedded devices.

2 AES Reminder

AES encryption and decryption are based on four different transformations that
are performed repeatedly in a certain sequence; each transformation maps an
input state into an output state. The transformations are grouped in rounds
and are slightly different for encryption and decryption. The number of rounds
depends on the key/block size.

Figure 1 illustrates the general structure of the AES algorithm. Compared
to encryption, decryption is simply an execution of the inverse transformations
in the inverse order.

For simplicity, we describe only the 128-bit block- and and key-size version of
the algorithm; although important design parameters, block and key sizes have
no bearing on the content of the paper. For a complete mathematical specifica-
tion of the AES algorithm we refer readers to [5].

In the standard Rijndael, a 128-bit data block is considered as a 4×4 array of
bytes (usually referred as a state). The algorithm consists of an initial data/key
addition, 9 full rounds, and a final (modified) round. A separate key scheduling
module is used to generate all the sub-keys, or round keys, from the initial key.
A sub-key is also represented as 4× 4 array of bytes.
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Fig. 1. The structure of the AES encryption and decryption algorithms.

The full round involves four steps.

– The Byte Substitution, or SubBytes step replaces each byte in a block by
its substitute in an S-box. The S-box is an invertible substitution which is
constructed by a composition of two transformations:
• First, each byte A of a state is replaced with its reciprocal in GF (28)

except that 0, which has no reciprocal, is replaced by itself.
• Then, an affine transformation f is applied. It consists of a bitwise matrix

multiply with a fixed 8 × 8 binary matrix M , after which the resultant
byte is XOR-ed with the hexadecimal number {63}.

The S-box is usually implemented as a look-up table consisting of 256 1-byte
entries, but also can be computed “on-the-fly”.

– Next comes the Shift Row step. Each row in a 4 × 4 array of bytes of the
state is shifted 0, 1, 2 or 3 bytes to the left in a round fashion, producing a
new 4× 4 array of bytes.

– In the Mix Column operation, each column in the 4 × 4 array of bytes is
considered as polynomial over GF (28) and multiplied modulo x4 + 1 with a
fixed polynomial c(x) = {03}x3 + {01}x2 + {01}x + {02}.
Since multiplication is carried out in GF (28), the product is calculated mod-
ulo irreducible polynomial m(x) = x8+x4+x3+x+1, or 1{1b} in hexadecimal
representation.
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– The final step, Add Round Key, simply XOR-es the result with the sub-key
for the current round.

In parallel to the round transformation, the round key is computed in the Key
Scheduling Block. The round key is derived from the cipher key by means of key
expansion and round key selection.

– The expanded key represents a linear array of 4-byte words, where the first
Nk words (where Nk is equal to the key length divided by 32) are filled in
with the cipher key. Every following word W [i] is obtained by XOR-ing the
words W [i − 1] and W [i − Nk]. For words in positions that are multiples
of Nk, the word is first rotated by one byte to the left; then its bytes are
transformed using the S-box from the Byte Substitution step, and XOR-ed
with the round-dependent constant.

– Round keys are taken from the expanded key in the following way: the first
round key consists of the first Nb words (where Nb is equal to the block
length divided by 32), the second of the following Nb words, etc.

There are many design tradeoffs to consider when implementing the AES al-
gorithm. In applications such as smart cards, the program’s footprint, memory
requirements, power consumption and throughput are important considerations.

In the next section we propose an implementation method that can real-
ize both, encryption and decryption. The method requires only 512 bytes of
memory and totally avoids Mips-intensive computations such as multiplication.
What is more important, the method can be extended to accommodate secure
computations on masked data without a penalty of extra memory.

3 Implementing AES Encryption and Decryption
Using log/alog Tables

To do calculations in a finite field GF (2n), the field elements are represented
in a basis. Most software implementations use a standard basis, where elements
are represented as polynomials of the form a0 + a1x + ... + an−1x

n−1, where all
ai are elements in GF (2), and addition is done modulo 2. Field operations on
these elements consist of computations on polynomials, e.g., field multiplication
can be calculated as a multiplication of two polynomials followed by a reduction
of the result modulo some fixed irreducible polynomial degree n.

In [20] it was suggested to use a different representation of field elements. The
new representation is based on the fact that all non-zero elements in a finite field
GF (2n) can be obtained by exponentiation of a generator in this field. So after
choosing a basis for GF (2n), we look for a field generator γ and calculate all pairs
(α, i) such that α = γi, 0 ≤ i ≤ 2n−1, α ∈ GF (2n)\ {0}. Such representation of
non-zero elements is GF (2n) is unique for a fixed primitive element γ; i is the
discrete logarithm of α with respect to γ.

The pairs are stored in two tables, a log-table sorted on α, and an alog-table
sorted on i. Each table takes 2n − 1 words of n bits.
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3.1 Computations in Galois Fields Using log- and alog Tables

The log/alog tables can be used to calculate in GF (2n) very efficiently, avoiding
all Mips-intensive operations [20].

A sum of two field elements, α and β is calculated as a bitwise XOR opera-
tion:

α + β = α⊕ β.

A product of two non-zero elements can be calculated with three table look-
ups:

α · β = alog[(log[α] + log[β]) mod (2n − 1)].

An inversion operation on a non-zero element from GF (2n) can be calcu-
lated with two table lookups only:

α−1 = alog[−log[α] mod (2n − 1)].

Inversion in the field is defined only for non-zero elements, while zero is always
mapped into itself by convention. In order to avoid checking for zero, we use an
idea from [9] and augment the log and alog tables with one more value. Namely,
let log[0] = 2n − 1 and alog[2n − 1] = 0; then

procedure invert (alpha) // alpha is in the interval 0 .. 2^n - 1
{
temp = (2^n - 1) - alpha;
if(0 < temp && temp < 2^n - 1) return alog[temp];
else return alog[alpha];

}.

Taking this augmentation into account, the multiplication can be expressed
as

procedure mult (alpha, beta)
{

temp = (log[alpha] + log[beta]) mod (2^n -1);
switch(temp) {

case temp == alpha: return alog[beta];
case temp == beta: return alog[alpha];
default: return alog[temp];

}
}.

The new representation allows us to obtain a very compact, efficient and flex-
ible implementation of the AES algorithm that can be used for both, encryption
and decryption. How it is done is described below.

3.2 Implementation of Round Operations Using log/alog Tables

Maintaining pre-computed tables to simplify operations and improve perfor-
mance is a common practice. For AES, a method to combine different opera-
tions of the round transformation in a single set of table lookups was suggested
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in [4]. This approach basically combines the matrix multiplication required in
the MixColumn operation with the S-box, and involves 4 tables with 256 4-byte
entries, i.e., 4KByte of memory. Because encryption and decryption must use
different tables, the total memory requirement amounts to 8KByte.

Another solution is to trade memory for speed, and use two 256-byte lookup
tables for the SubByte and InvSubByte operations, while implementing the Mix-
Column/InvMixColumn operations separately. Here, again, various trade-offs are
possible.

Each call to the MixColumn or InvMixColumn operations results in sixteen
field multiplications. A straightforward implementation of the multiplication op-
eration in the field is Mips-intensive. Since one of the multiplicands is fixed (with
values limited to 6 field elements, i.e., {01}, {02} and {03} for MixColumn and
{0b}, {0d}, and {09} for InvMixColumn), a conventional field multiplication op-
eration can be replaced by a table lookup, requiring a new 6 × 256 table, each
element of which is 8-bit wide.

Another solution is to implement field multiplication by repeated application
of the xtime operation. The latter can be realized either as a left shift and a
subsequent conditional bitwise XOR with {1b}, or as a table lookup, requiring
only 256-byte table. This approach involves slight computational overhead (on
the average three xtime and three field addition operations per one multiplication
in the field) and is less efficient than table lookups, but saves memory, and is
often used for memory-constrained devices and 8-bit microprocessors.

The log/alog-tables have been used in [16] to provide an efficient software
method to compute the MixColumn and InvMixColumn operations. In compar-
ison with a conventional table lookup for MixColumn/InvMixColumn, the new
solution reduces memory requirements from 6× 256 bytes to 2× 256 bytes only,
which is an important factor for smart cards.

Further memory optimization can be achieved by using the log/alog-tables to
compute the SubByte/InvSubByte operations by exploiting similarities between
encryption and decryption. For this, it is necessary to implement byte substitu-
tion in two separate steps, i.e., as a composition of inversion in the field and an
affine transformation. While the affine transformations used for encryption and
decryption are slightly different, inversion in GF (28) can be calculated using the
same log/alog-tables.

The affine transformation used for encryption consists of shifts and simple
multiplications:
procedure affine_encrypt (x) // x contains the input byte of the state

{

tmp=(((x&1)*0xff)&c1);

tmp^=((((x&2)>>1)*0xff)&c1);

tmp^=((((x&4)>>2)*0xff)&c2);

tmp^=((((x&8)>>3)*0xff)&c3);

tmp^=((((x&16)>>4)*0xff)&c4);

tmp^=((((x&32)>>5)*0xff)&c5);

tmp^=((((x&64)>>6)*0xff)&c6);

tmp^=((((x&128)>>7)*0xff)&c7);

return tmp^=c; // tmp contains the output byte of the state

}
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The inverse affine transformation can be implemented in a similar way. Thus,
the same log/alog tables can be used in both, the MixColumn and SubByte oper-
ations for encryption, and in the InvMixColumn and InvSubByte operations for
decryption. Sharing log- and alog-tables reduces the total memory requirements
for complete AES implementation to 512 bytes only. At the same time, all Mips-
intensive (and thus, power consuming) field arithmetic operations are replaced
by table lookups, ensuring not only memory- but also time- and power-efficient
implementation. As an additional bonus, an overall program that realizes both,
encryption and decryption, has a small footprint.

The combination of these three properties makes the described solution ideal
for smart cards and related embedded devices. In the remaining part of the paper
we show how log/alog tables can be used for efficient and secure computations
on masked data.

4 Protection Against Side Channel Attacks
with Data Masking

Basically, side-channel attacks work because there is a correlation between the
physical measurements taken during computations (e.g., power consumption [10],
EMF radiation [17], time of computations [11]) and the internal state of the
processing device, which itself is related to a secret key.

Among many attacks, the Differential Power Analysis (DPA) is the most dan-
gerous (see, for example, [15]). It uses statistical analysis to extract information
from a collection of power consumption curves obtained by running an algorithm
many times with different inputs. Then an analysis of a probability distribution
of points on the curves is carried on. The DPA attack uses correlations between
power consumption patterns and specific key-dependent bits which appear at
known steps of the cryptographic computations. For example, a selected bit b at
the output of one S-box of the first round of the AES will depend on the known
input message and 8 unknown bits of the key. The correlation between power
consumption and b can be computed for all 256 values of 8 unknown bits of the
key. The correlation is likely to be maximal for the correct guess of the 8 bits of
the key. Then an attack can be repeated for the remaining S-boxes.

There are many strategies to combat side-channel attacks. Among software
countermeasures against SPA/DPA are such techniques as introducing dummy
instructions and/or random wait states, balancing of Hamming weight of inter-
nal data, randomization of instruction executing sequence. The most powerful
software countermeasure appears to be so-called bit splitting [2, 8, 15], which in
case when each bit is split into two shares can be reduced to masking data with
random values. The idea how to apply data masking to AES is simple: the mes-
sage, as well as the key, are masked with some random masks at the beginning of
computations, and thereafter everything is almost as usual. Of course, the value
of the mask at the end of some fixed step (e.g., at the end of a linear part of
computations or at the end of a round) must be known in order to re-establish
the expected value at the end of the execution; we call this mask correction.
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A traditional XOR operation is used as a masking countermeasure; however,
the mask is arithmetic on GF (28) [3]. The operation is compatible with the
AES structure except for SubByte, which is the only non-linear transformation
since it uses inversion in the field. In other words, it is easy to compute mask
correction for all transformations in a round, apart from the inversion step of
the SubByte. Namely, if every byte A of the (initial or intermediate) state is
masked with some random mask R, then OP(A⊕R) = OP(A)⊕OP(R), where
OP ∈ {MixColumn/InvMixColumn, ShiftRow/InvShiftRow, AddRoundKey}.
Thus, given any random mask, it is easy either to pre-compute the correspond-
ing mask correction, or to compute it on-the-fly, in parallel with computations
on masked data.

This property also holds for an affine part of the SubByte operation, but
does not hold for inversion in the field. To overcome this difficulty, Akkar and
Giraud [1] proposed a so-called transformed masking. In this method, first an
additive mask is replaced by a multiplicative mask in a series of multiply and
add operations in GF (28), after which normal inversion takes place, and finally,
a transformation of a multiplicative mask into an additive mask is carried out.
Unfortunately, as was pointed out in [6], a multiplicative mask does not blind
zero element in GF (2n), enabling a so-called zero attack.

The paper [19] suggested a simplification of the aforementioned technique.
At the same time it proposed a simple but efficient way to enhance security with
respect to the zero attack by conduction on-the-fly generation of the masked
lookup tables used for implementation of the inversion operation.

In what follows we tackle the problem of non-linear operations on masked
data from a different angle. Using a non-standard representation of elements in
GF (2n) allows us to implement inversion on masked data and to compute the
corresponding mask correction in a secure and efficient manner.

5 Inversion on Masked Data Using log/alog-Tables

The problem can be formulated as follows. Given A⊕R, where A is a byte of a
state and R some uniformly distributed random value, find an efficient method
to compute the value A−1 ⊕ R̃, never revealing A or A−1 in a process. Here R̃
can be either equal to R or any other (uniformly distributed) random value.

The solution is based on the following observations.

– First, a new representation allows us to infer how (A ⊕ R)−1 differs from
A−1:
1. A field element A ⊕ R can be represented as γy = γi ⊕ γr, where γi

is a representation of the unknown byte A of the state, and γr is a
representation of the known random mask R.

2. By simple formulae manipulations, we obtain

γy = γi ⊕ γr = γi · (γr−i ⊕ 1).

3. Therefore, we can write

γ−y = (γi ⊕ γr)−1 = (γi)−1 · (γr−i ⊕ 1)−1.
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Hence, (γr−i ⊕ 1)−1 is the mask correction for “masked inversion”.
– Next, we show how to compute this mask correction without revealing A or

A−1.
1. We can consider A⊕R from a different view point, namely as

γy = γi ⊕ γr = γr · (γi−r ⊕ 1).

2. Hence, if we multiply γy by γ−r, we get

γy · γ−r = γ−r · γr · (γi−r ⊕ 1) = γi−r ⊕ 1.

3. Executing (γi−r ⊕ 1)⊕ 1, we find γi−r, after which using log- and alog-
tables, we easily compute (γi−r)−1 = γr−i.

4. Finally, after XOR-ing γr−i with 1 and inverting the result, we find the
mask correction (γr−i ⊕ 1)−1.

Figure 2(a) summarizes the computation flow for calculating inversion on masked
data and the respective mask correction.

5.1 MixColumn/InvMixComumn on Masked Data
with log/alog Tables

It is easy to implement the MixColumn and InvMixColumn operations on
masked data using log/alog tables as well. Indeed, since one of the terms in
each field multiplication involved in these operation is fixed, the operation is
linear. Let I denotes a fixed term, then (A ⊕ R) · I = (A · I) ⊕ (R · I). The
corresponding mask correction can be computed trivially as R · I.

Hence, each of the MixColumn/InvMixColumn operations on masked data
is reduced to 2× (16×3) table lookups using the same log/alog-tables that were
used to compute inversion.

6 Coping with “Zero Attack”

The previously published proposals to randomize AES efficiently, such as mul-
tiplicative [1] and simplified [19] masking techniques, had a subtle flaw, namely,
they were vulnerable to a zero attack [6]. The attack is based on the fact that
a multiplicative mask masks only non-zero values. In other words, if the actual
data byte A is zero, then for any mask X , (A⊗X) = 0.

Using Figure 2(a) as a reference, let us analyze how robust the new method
is with respect to the zero attack.

First of all, notice that all manipulations on discrete logarithms are fully
protected as long as random masks R change from one run to another.

On the other hand, detecting that an intermediate value γi−r is zero provides
some dangerous information. Indeed, γi−r is in fact equivalent to A⊗R−1, where
A = (data ⊕ key), and R−1 is a mask. γi−r = 0 implies that either A = 0 or
R−1 = 0. Hence an attacker may systematically try all 256 possible values for
data in order to find the one which turns A into zero.

In order to protect the inversion on masked data from this situation, we will
have to implement log/alog table lookups in a secure way.
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Fig. 2. Computing inversion on masked data with log/alog tables.

6.1 Masked log/alog Tables

The simplest and the least expensive solution is to modify the inversion algorithm
in the following way. Instead of XOR-ing the result of inversion in the mask
correction branch with 1 and thus exposing γi−r, we use fixed “correction” tables
log’ and alog’, such that log′[γi⊕ 1] = i and (alog′[i] = γi⊕ 1. This necessitates
slight data corrections in the processing flow, as shown in Figure 2(b).

A more general and more secure solution consists in using the technique
similar to the one suggested in [14]. We assume that the standard log and alog
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tables are stored in EEPROM. Prior to running AES, we fix a pair of independent
random bytes V and W . V is the value that masks every input byte of the original
log table, while W masks every output byte of the original alog table. Then we
recompute the log and alog tables (using, for example, the fast “split and swap”
algorithm from [19]) in such a way that for every α = γi, α ∈ GF (28), the
following holds:

log′[α⊕ V ] = i and alog′[i] = α⊕W.

Re-computations can be done while downloading the tables from EEPROM to
RAM prior to running the AES algorithm.

Of course, the computation flow for inversion (as well as for multiplications in
MixColumn/InvMixColumn) should be modified by XOR-ing, where necessary,
inputs to the log ’ table with V and outputs of the alog ’ table with W .

The complete information flow for computations of inversion in the field using
masked log/alog tables is depicted in Figure 2(c). The data correction for the
MixColumn/InvMixColumn operations is trivial.

6.2 Combining log/alog Tables with Random Data Partitioning

In this section we describe a new solution that re-enforces the previous result. It is
based on the data splitting [2] idea applied to the mask correction computations.

Indeed, we can represent a masked data as three “slices”:

A⊕ R = γi ⊕ γr = γi−k · (γr−i+k ⊕ γk),

where γk, γr are some uniformly distributed random values. Then after inversion
we obtain:

(A⊕R)−1 = γ−i+k · (γr−i+k ⊕ γk)−1 = γ−i · γk · (γr−i+k ⊕ γk)−1.

From the last equation we infer the mask correction:
γk · (γr−i+k ⊕ γk)−1.

In order to understand how to compute this mask correction, we re-write the
masked data as:

A⊕R = γi ⊕ γr = γr+k · (γi−r−k ⊕ γ−k).

This equation is used as a basis for our mask correction algorithm. Indeed,
multiplying (A⊕R) by γ−r and γ−k (in any order), we get:

(A⊕R) · γ−r · γ−k = γr+k · (γi−r−k ⊕ γ−k) · γ−r · γ−k = γi−r−k ⊕ γ−k.

Then XOR-ing the result with γ−k and inverting the sum, we compute γr−i+k.
Next, XOR-ing this value with with γk (i.e., γr−i+k ⊕ γk), inverting the result
and multiplying it by γk eventually produces a mask correction:

γk · (γr−i+k ⊕ γk)−1.
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Fig. 3. Information processing flow for computing inversion on masked data using
log/alog tables with random data partitioning.

The information processing flow for computing inversion on masked data and
the corresponding mask correction is depicted in Figure 3(a).

If this algorithm uses original log and alog tables, there is still a part of the
computation flow that is potentially vulnerable to the zero attack. Namely, it
is the part between two XOR operations, where after the first XOR with γk

we obtain a value equivalent to γi−r−k and after a subsequent inversion we get
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Fig. 4. Transformation of a multiplicative mask into a boolean mask.

γr−i+k. If these values are both zero, there can be three potential cases: γi = 0,
or γr+k = 0, or γk = 0 (we assume that R = 0). Hence, an attacker can mount
a second-order DPA attack, and discover the key.

In order to protect against this hazard, we mask all outputs of the alog
table by some random value W . When W is fixed prior to running of the AES
algorithm, the alog table can recomputed (using the algorithm from [19]) on-
the-fly during downloading it from EEPROM to RAM: alog′[i] = γi ⊕W . The
corresponding modification in the information flow processing for computing the
mask correction for inversion in the field is depicted in Figure 3(b).

After having computed the mask correction, the transformation of the multi-
plicative mask back into a boolean mask can be computed as shown in Figure 4.

7 Conclusion

In this paper we propose a new solution to the problem of software implementa-
tion of the AES encryption/decryption algorithm secure against DPA attacks.
Our solution is based on the discrete logarithm representation of elements in
GF (2n). The field operations are effectively reduced to table lookups and simple
operations like shift, XOR and integer arithmetic.

Only two tables are used for the entire round, one is a 256-byte log-table,
sorted on field elements, and another is a 256-byte alog table sorted on discrete
logarithms. The same tables are used for SubByte and MixColumn operations
in encryption, and their counterparts in decryption process.
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The implementation can be easily extended to accommodate the most ver-
satile countermeasure against power analysis attacks, namely, data masking.
There is no memory overhead involved, and computational overhead includes
only simple table manipulations while downloading it from EEPROM to RAM
and unavoidable computations of mask corrections. The latter amounts to XOR
and simple integer arithmetic operations.

A danger of the zero attack is eliminated at the price of few additional XOR
operations and on-the-fly table re-computations for every run of the algorithm.
The latter can be efficiently executed using algorithm from [19] while coping the
content of log/alog tables from EEPROM to RAM prior to running AES.

To our best knowledge, the proposed solution is the most efficient secure
software implementation of the AES encryption/decryption algorithm published
so far. Four factors make it ideal for limited devices such as smart cards, namely,
(1) the program has a very small footprint, (2) it is fully protected against
DPA/SPA attacks (including zero attacks), (3) the program does not have Mips-
intensive power consuming operations using table lookups instead, and (4) only
512 bytes of RAM are necessary to store lookup tables that are used for both,
encryption and decryption.
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Abstract. Side-channel attacks pose a serious threat to implementa-
tions of cryptographic algorithms. In the pioneering article of Chari, Rao
and Rohatgi, the general idea behind template attacks was introduced.
Template attacks apply advanced statistical methods and can break im-
plementations secure against other forms of side-channel attacks.
However, in our research it turned out that several details, which are
essential to practical implementations of template attacks, still need to
be answered. In this article we provide answers to open issues, such as
how to select points of interest in an efficient way, or how to preprocess
noisy data. In addition, we show the benefits of trial classifications and
we point out that in practice so-called amplified template attacks have
to be considered as a potential threat.

Keywords: Side-Channel Analysis, Template Attack, DPA, DEMA

1 Introduction

Devices performing cryptographic operations can be analyzed by various means.
Traditional cryptanalysis looks at the relations between input and output data
and the used keys. However, even if the implemented algorithms are secure from
a cryptanalysis point of view, side-channel attacks pose a serious threat. Side-
channel attacks are a subgroup of implementation attacks. Examples thereof
are timing attacks [Koc96], power attacks like DPA or SPA [KJJ99], EM at-
tacks [AARR02], error message attacks [Ble98,KPR03], or combinations of dif-
ferent sources [WT01,ARR03].

Traditional DPA/DEMA style attacks assume the following threat model:
The secret key stored in the device is used to perform some cryptographic op-
erations. The attacker monitors these operations using captured side-channel
information like power consumption or electromagnetic emanation. The attack
is successful if the used secret key can be reconstructed after a certain number of
operations. If the number of operations is limited by the protocol used to initiate
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these operations, the attacker has an upper bound on the number of operations
he can observe.

If the operation, which leaks usable side-channel information, is executed just
once, the threat model is different: The attacker has to reconstruct the secret
key using a single trace of side-channel information. Besides protocol limitations,
ephemeral keys can be the reason for such a constraint. Techniques like SPA or
SEMA [QS01] are a general way to tackle this problem. These techniques use
easily distinguishable features of operations like double and add, or add and
multiply, to infer key-bits. The majority of the available literature deals with
these two types of scenarios.

If the observed signal-to-noise ratio is not high enough, or the implementation
is done in a way that ensures the used operations being independent of the
key(i. e. no key-dependent jumps), SPA/SEMA style attacks are not possible
anymore. The attacker has to think of other ways to get hold of the secret key:
One way to do this is to use a similar device and build a model of it. Using this
model, an attacker might now be able to recover the secret key. Only very few
publications [BS99,FP99,CRR03] deal with this model.

A very general and powerful way to perform such a two-stage attack, called
template attack, is given in [CRR03]. The key concept is to store the probability
distribution of leaking information for each device state. Signal classification
techniques are subsequently used to assign a captured trace from a device to
one device state. This technique is computationally intensive, execution time
and storage requirements are very high. The result is a reduced set of probable
secret keys.

1.1 Contribution of This Work

In order to make template attacks more practical, two goals need to be consid-
ered. The first one is to decrease the computational requirements of the attack.
Secondly, the size of the set of probable keys should be kept as low as possible,
subsequently referred to as the accuracy of the attack. To reach these goals, we
address issues in this article such as:

– Trial Classification. A separate step in the course of a template attack
named trial classification is introduced in Section 3.1. We propose to use
trial classifications to improve the accuracy of a template attack.

– Points of Interest. For a template attack to be practical, it is paramount
that not all points of a trace are part of the template. To reduce the number
of points, a standard technique called principal component analysis could
be used. Due to the high computational requirements of this technique, we
propose a much simpler and faster approach in Section 3.2. Additionally, we
suggest several properties of the selection of points of interest. Hence the
algorithm is improved even further.

– Preprocessing. We introduce a preprocessing step in Section 3.3. We show
that the use of discrete Fourier transformation on traces significantly im-
proves attack results in practice. This is illustrated using side-channel infor-
mation from power consumption and EM emanation. In Section 4, we give
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evidence that in cases where too much data independent (ambient) noise in
the input data renders a template attack impossible in the time domain, a
transformation of input traces into the frequency domain is highly advanta-
geous.

– Amplified Template Attacks. By extending the threat model, the clas-
sification results of template attacks can be increased. This approach is es-
pecially useful when the number of allowed iterations of critical operations
is not high enough to allow a DPA style attack.
The remainder of the paper is organized as follows: The next section revis-

its template attacks and covers the ideas behind it. Requirements of an attack
to be practical are stated. Section 3 proposes several means to meat these re-
quirements. In Section 4 we illustrate the power of our proposals considering a
concrete example.

2 Template Attacks

The method used in the template attack is as follows: First a strategy to build a
model of all possible operations is carried out. The term “all possible operations”
usually refers to the cryptographic algorithm (or a part of it) being executed
using all possible key values.

The model of captured side-channel information for one operation is called
template and consists of information about the typical signal to expect as well as
a noise-characterization for that particular case. After that, the attack is started
and the trace of a single operation (e. g. the key-scheduling of an algorithm)
is captured. Using the templates created before which represent all key-values,
the side-channel information of the attacked device is classified and assigned to
one or more of the templates. The goal is to significantly reduce the number of
possible keys or even come up with the used key.

However, this idealized approach faces several real-world problems. To lay
the foundations for a successful attack, these problems are dealt with now.

2.1 Approaching the Template Attack
Assuming the captured trace consists of b sampled points and each sampled
point consists of a signal and a noise part, one gets a b-dimensional noise-vector
per trace. In general, all elements of this vector are drawn from different un-
known probability distributions. A key point here is that the data-dependance
of the noise is reflected by the probability distribution it is coming from. The
challenge of modeling this noise vector can for example be simplified by as-
suming a normal distribution for each element and linear combinations thereof.
This leads to the well-known multivariate-gaussian noise model. Simpler noise
models like univariate models have been shown to be inadequate for practical
purposes [CRR03].

2.2 Building Templates
In order to classify a trace, a template for each of the possible operations has
to be built. The template reflects the statistical properties of such a trace, or in



Practical Template Attacks 443

other words, the properties of the probability distribution of all its points. Using
the multivariate gaussian model, a template consists of a vector of means and a
matrix of covariances. To create such a template, a number of traces have to be
captured; more traces lead to a more accurate model.

Let us assume that n different operations need to be distinguished and for
every operation a number of p traces named t1, .. tp have been captured. Sub-
sequently, we consider just one out of n operations.

The vector of means can be calculated as follows:

t = M =
1
p

p∑
j=1

tj (1)

Keep in mind, that all traces tj are taken from the same operation. The
next step is to calculate the noise vectors. For every trace tj of a operation, the
corresponding noise vectors Nj are tj−M . They are the basis for the covariance
matrix of the noise, which is the second part of the template. But first we
define the covariance, which is sometimes referred to as a means to measure
the linear dependance between two random variables. The empirical covariance
of two random variables X and Y is defined as

cov(X, Y ) =
1

n− 1

n∑
i=1

(xi − x)(yi − y) (2)

In order to describe the covariances between more than two random variables, a
matrix of covariances is needed. In our case, the entries in the noise covariance
matrix can be defined as:

CM(u, v) = cov(Nu, Nv) (3)

Hence the covariance of all pairs of noise vectors is included. Note that the co-
variance matrix is symmetric and that elements on the diagonal of the covariance
represent the variance for that column.

For each of the n possible operations, the corresponding template is the tuple
(M, CM).

2.3 Classifying Traces

Once all templates are derived using a programmable device, they can be used
to classify a trace t captured from the device under attack. Using the maximum-
likelihood principle, the goal is to find the template, that “fits” best to the
captured trace. The following steps have to be done to accomplish this.

1. For each template (which represents a certain key value), compute the noise
Ni of the trace as if the device under attack was using the key value the
template is associated to. Mi refers to the vector of means of the used tem-
plate.

Ni = Mi − t (4)
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2. The probabilities of observing this n-dimensional noise vector Ni can be cal-
culated using the noise covariance matrix of each template. Assuming that
every point of the trace is drawn from a gaussian shaped probability distri-
bution, the formula for the n-dimensional multivariate gaussian probability
distribution can be used:

p(Ni) =
1√

(2π)n|CMi|
· e− 1

2 NT
i CM−1

i Ni (5)

If the assumption of a gaussian shaped noise holds, then the maximum like-
lihood approach of selecting that template with the highest probability of
observing the calculated noise is optimal.

2.4 Requirements for an Attack in Practice

In this subsection we focus on some properties of the template attack, which can
render it impractical if they are not considered properly.

Classification Performance. It is not possible to perform the classification
process on the entire key space at once, since building that many templates is
not feasible. The iterative approach to cope with this problem, called extend and
prune strategy, is explained in [CRR03].

The goal is to keep the number of possible keys which remain after the
pruning step small at every iteration. More efficient classification performance
results in better pruning steps. Depending on the power of the classification, or
their accuracy, the number of required templates explodes more-or-less towards
the end of the attack. For a successful attack, it is sufficient that the exhaustive
search on the remaining possible keys is feasible.

Trace Length. Depending on the measurement setup and the data acquisition
strategy, captured traces can be quite big (i. e. the number of sampled points is
high). This has several implications for the attack:

– In the multivariate model, the covariance matrix has the highest storage
requirements. The size of a covariance matrix depends on the number of
points considered. Hence, the memory requirements of the templates grow
quadratically with the number of points.

– Calculating the observation probability involves a matrix inversion. As a con-
sequence, the running time of the device characterization step grows nearly
cubically (depending on the used algorithm for matrix inversion) with the
number of points.

Especially the latter observation can have devastating effects on the practi-
cality of an attack. Consequently a general way has to be found to deal with this
problem. The goal is as follows:

Having a trace of size N , select those n < N points of the trace, which
provide the most information on the used key.
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Subsequently these n points are referred to as points of interest or selected
points. Choosing a reasonable number (which is explained subsequently) always
leads to template sizes significantly smaller than the size of one trace. For a
template attack to be practical it is paramount that n is small enough to allow
a fast calculation of observation probabilities. Our efficient way to tackle this
problem is shown in Section 3.2.

The classification performance is equally important, since it directly affects
the pruning step which in turn limits the number of templates to be built. In
Section 3.3 we propose a novel way to increase classification performance in
practice.

3 Our Way to Make Template Attacks More Practical

An RC4 [Sch96] implementation on an 8-bit microcontroller is considered subse-
quently. Side-channel leakage in the form of power consumption or EM emana-
tion of the initialization part of RC4, also known as the key scheduling, is used
to identify the used key. A more detailed description of the attacked implemen-
tation and the measurement setup can be found in Appendix A.

3.1 Trial Classification

We introduce an extension to the general two-stage model: The programmable
device in the first step of the attack can not only be used to build templates
but also to perform trial classifications in order to obtain good parameters for
the actual attack. Note that this step is possible for every template attack and
significantly improves results. Following this approach, the efficiency of building
templates carries even more weight.

3.2 Efficiently Choosing Points of Interest

In order to find those n out of all N points providing the most information
for a template, principal component analysis [Jol02] (PCA) can be used. PCA
is mainly used in multivariate statistics to reduce the dimensionality of a data
set. The procedure rotates existing axes to new positions such that maximum
variabilities are projected onto the axes. This way, the most interesting features
of the data-set are preserved. It was applied to similar problems in side-channel
analysis as well [BNSQ03]. Adapted to our problem, this approach delivers a
ranking of the points in our traces concerning their dependance on keys. However,
this comes at the price of high computational requirements. Therefore we suggest
the following simpler and more efficient strategy:

– Take the vectors of means calculated while building the templates.
– Compute differences of each pair of mean vectors and sum them up.
– Select n point among the highest peaks.

Note that the last step needs to be done, even if PCA is used. For each trial
classification, the process of choosing points of interest needs to be repeated.
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Hence any improvement in this step has an even greater impact on the prac-
ticality of an attack. We achieved a speedup factor 1000 for a typical setting,
without affecting the classification performance.

In Figure 1, the sum of differences trace for one round of the RC4 key-
schedule is plotted. Several distinct sets of traces (each containing 100 traces of
100μs length) were used as input. The area between the points 40μs and 70μs
is clearly visible as the most interesting part of the plot, since the rest of the
trace is not dependent on the key.
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Fig. 1. Sum of differences trace.

Choosing the n highest points to serve as the points of interest has been
proven to be non-optimal during our experiments. A more efficient strategy is
possible if some properties of good selections are known in advance. We propose,
that selected points should have the following properties:

– The minimum distance between these points should be approximately a clock
cycle or more, since additional points in the same clock cycle do not provide
additional information.

– The minimal height of a selected point should be higher than the noise floor
of the sum of differences trace.

An algorithm for choosing the n highest peaks that follows these constraints
was used in all our subsequent experiments. Disobeying these constraints leads
to poor classification performance even if a higher number of points of interest
is chosen.

To find a good trade-off between these parameters, trial classifications should
be used. To highlight the influence of the number of selected points on the
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Fig. 2. Performance as a function of the number of selected points.

classification performance, a number of experiments were carried out. A template
attack on a small part of the used key was performed with different numbers of
points of interest. Figure 2 shows the classifications performance as a function
of the number of selected points. The considered numbers of points range from 1
to 40. Additionally three different minimum distances were chosen. Results show
that 15–20 is a good number of points of interest. If the minimum distance was
chosen to be 20, not more than 20 points of interest were found above a level of
40% of the highest peak. The level starting from 20 is indicating this fact.

Figure 3 gives another point of view processing the same behavior. For each
graph, the number of points of interest was kept constant and the minimal
distance between these points was varied between 10 and 500 ns. Even though the
graph seems to be chaotic, one conclusion can be drawn: The minimal distance
is this attacking setup should be at least 50.

Even though the given values depend on the implementation and can not
be used directly for a template attack on another implementation, the outlined
strategy can be used for other implementations. Additionally, our results lead to
the conclusion, that classification results are declining if the number of points of
interest gets too high.

3.3 Preprocessing

In practical side-channel analysis, the raw input data is often preprocessed.
Sometimes this is just due to simplicity or efficiency reasons, e. g. summarizing
sampled points. There are however cases where the preprocessing step heavily
affects the results. Even if no thinkable transformation can add additional infor-
mation to a signal, information extraction procedures do improve. The template
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Fig. 3. Performance as a function of the minimum distance.

attack under consideration is such a case and a lucrative preprocessing transfor-
mation is described subsequently.

It turns out that the transformation of the input traces from the time domain
into the frequency domain is such a lucrative transformation. In our practical
work, an FFT algorithm was used to accomplish this transformation (a fast
algorithm to calculate the discrete Fourier transform, for background information
refer to [BP85]). In order to show the impact of this preprocessing step a number
of experiments were carried out. First some characteristic differences between
time domain analysis and frequency domain analysis are illustrated. Afterwards,
to highlight the influence of the number of selected points on the classification
performance in the frequency domain, a number of experiments were carried out.

Figure 4 contrasts both possibilities. It shows the power trace of one round
of the RC4 key schedule in the time domain (ranges from 0–100μs) and in
the frequency domain(ranges from 0–50MHz). The transformed input can also
be interpreted as the frequency spectrum. The regions with the highest peaks
indicate the clocking frequency and multiples of it. To amplify lower peaks, the
vertical axis is logarithmical. In Figure 5, the sum of differences of means trace is
plotted. Naturally, the key dependent areas are also in the range of the clocking
frequency and multiples thereof.

After preprocessing, the resulting traces can be used to perform a template
attack in exact the same way as without preprocessing. There is however a
difference in the number of points to consider. Figure 6 shows the classifications
results as a function of the number of selected points after preprocessing. The
considered numbers of points are ranging between 1 and 40. Additionally three
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different minimum distances where chosen. Results show that much less points
are sufficient in comparison to a template attack without the preprocessing step.

At the price of performing an FFT on every input trace (those used to build
up the templates as well as those to classify) we get a major advantage. The
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Fig. 4. Power trace of one round of the RC4 key schedule in the time domain (0–100μs)
and in the frequency domain(0–50MHz).
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template classification can be done much faster and storage requirements are
lower, since the size of n influences those requirements as outlined in Section 2.4.

Attention has to be paid that considerations on the lower bound for selected
peaks – as done in the time domain – are not directly applicable. In practice the
lower bound is much smaller in the frequency domain.

3.4 Amplified Template Attack

Even if the aim of a template attack is to recover the secret key using a single
trace, in many real world settings implementations allow for several iterations of
the same operation with the same secret key. The application of template attacks
is not restricted to stream ciphers like RC4 and can be applied to block ciphers
as well. Since every symmetric cipher contains some sort of key scheduling mech-
anism which processes the secret key, this generalization is possible. Smartcards
often use block ciphers for encryption or authentication, hence let us consider
the following example: A malicious petrol station tenant, named Eve, is using
a modified smartcard based payment terminal. Everytime a customer uses this
terminal, Eve captures one trace of side-channel information. This single trace
could already be used by Eve to carry out a template attack.

However, some customers are coming again and Eve gets hold of another
trace. The template attack can easily be extended to take advantage of such
situations, e.g. by adding up noise-probabilities p(Ni) of every captured trace and
applying the maximum-likelihood approach on these sums. As a consequence,
the power of the attacker is amplified. Using this approach, if n is the number

5 10 15 20 25 30 35 40 45 50
frequency [MHz]

su
m

 o
f d

iff
er

en
ce

s 
of

 m
ea

ns

Fig. 5. Sum of differences of means trace for the preprocessed inputs).
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Fig. 6. Performance as a function of the number of selected points.

of iterations, the error probability of template classification is reduced by the
factor

√
n. We have experimentally verified this improvement.

This improvement illustrates several important advantages over DPA style
attacks. The first one is a property of the template attack: there is no need to
know input or output data of the used algorithm. Additionally, in cases where
too few traces are available to facilitate a DPA style attack, template attacks
can take advantage of every single trace using the amplified template attack.

4 Applying the Improvements in Practice

We give an example where a classification is not possible at all without prepro-
cessing in Section 4.1. Thereafter, in Section 4.2, we show that with the same
measurement setup and with preprocessing, the template attack is successful.
The measurement setup used in both scenarios is described in Appendix A.

4.1 Template Attack Without Preprocessing
If measurements of the power consumption of the attacked device are not possible
for an attacker, EM probes are the next alternative. Even if information about
the power consumption is available for the attacker it can be advantageous to
consider EM channels additionally [ARR03].

Compared to power measurements, EM measurements are much noisier. Even
if the character of the noise is an important part of the built templates, ambient
noise originating outside the device is of no value for the attack. In order to high-
light the difference we call this noise data independent noise. As in Section 3.2,
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Fig. 7. Sum of differences of means trace for captured EM traces.

in a first step we capture traces while using different key values and sum up their
pairwise differences. The result is depicted in Figure 7. Compared to Figure 1
there are no key-dependant areas observable anymore. Subsequent classification
trials delivered no usable result.

If data independent noise is superposing the signal originating from the de-
vice, averaging techniques have to be used to eliminate it. However this can
be quite cumbersome. In our particular setup, increasing the number of needed
traces to build a template from 100 (which was sufficient for power traces) to
1000 did not change the bad classification results. Increasing the number of traces
even more might lead to better results at some point, but on the other hand it
would render the actual template attack for the complete keyspace impractical.

4.2 Template Attack with Preprocessing
Using the preprocessing step explained in Section 3.3, increasing the number
of traces is however not necessary and still leads to much better classification
results. In this case the error probability was 2% on average. The resulting sum
of differences of means trace is depicted in Figure 8. Key dependent frequency
areas are clearly visible.

There are several similarities to the experiment using power traces as input
as shown in Figure 5. Again the sum of differences trace is reflecting the spectral
density of the original power traces. However the highest peaks are not located
at the clock frequency, but at some multiples of it.

Figure 9 shows the performance of our approach as a function of the number
of selected points of interest. Compared to the similar experiment on traces
gained from power measurements (see Figure 6) a much bigger number of selected
points is needed.
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Fig. 8. Sum of differences of means trace for the preprocessed EM traces.
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Fig. 9. Performance as a function of the number of selected points.

In contrast to the power measurements, there is a distinctive leap consid-
ering different minimal distances between selected points. This can be seen in
Figure 10, where the performance of the sum of differences of means method
for preprocessed EM traces is plotted as a function of the minimum distance
between two points of interest. Similar to the time domain results for power
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Fig. 10. Performance as a function of the minimum distance.

measurements, choosing points within a certain distance in frequency does not
help classification. The slight variations of classification performance after the
leap are due to the selection algorithm and no additional implications result from
them. They result from choosing slightly different peaks in the same frequency
areas in order to meet the minimum distance constraints.

5 Conclusion

Starting from the pioneering work of [CRR03], where several important questions
concerning the implementation of template attacks are left open, we proposed
several improvements.

First, we outlined a way to perform a template attack in more detail: In order
to find optimal parameters for the attack like number and position of points of
interest, a first step named trial classification was introduced. Using this trial
classification, we ensured the practicality of the attack by introducing a efficient
algorithm that replaces principal component analysis. We increased the speed of
selecting points of interest by a factor of 1000 without impairing the classification
performance.

Additionally, we introduced the preprocessing step. A transformation of
traces from the time domain into the frequency domain is suggested. This im-
proved classification results and lowered runtime and storage requirements.

Finally, the power of our proposals is illustrated on a concrete example. Due
to much ambient noise, classification is not possible at all without preprocessing
in this example. Using our proposed preprocessing technique combined with
trial classifications however proved to be very valuable and resulted in practical
classification probabilities.
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A Attack Implementation and Measurement Setup

For our practical experiments on the template attack, we used RC4. The algo-
rithm was implemented on an ATMEL AT89S8252. This 8 bit microcontroller is
operated on a clock frequency of 11.059MHz. For data acquisition we used the
digital oscilloscope Lecroy LC584AM, having a resolution of 8 bit. In most of
our experiments we used a sampling rate of 100 MSamples/s.

RC4 specifies a whole family of algorithms whose differences lie in the used
word-size n; typically the word-size is 8. The algorithm consists of two parts
which are executed sequentially:
– An initialization phase or KSA (Key Scheduling Algorithm) with 2n rounds
– An output phase or PRGA (Pseudo Random Generation Algorithm) out-

putting one word per round.
Both parts access an internal table of size n ∗ 2n bits. In order to keep our

implementation of RC4 completely inside the internal RAM, the word size was
reduced to 7 bit. Read/write access to external RAM resources would have leaked
too much side-channel information and would therefore have simplified the attack
unrealistically. For our template attack on RC4, we just considered the KSA.

Figure 11 depicts our measurement setup. It shows our evaluation board with
the ATMEL microcontroller, the EM probe used for our EM measurements and
the differential probe used for our power measurements.
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Fig. 11. Measurement setup.
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Abstract. Information leakage via electromagnetic emanation, usually
known as Tempest, has been recognized as a threat and countermea-
sures have been proposed. In particular, Kuhn and Anderson developed
a protective measure for Tempest called the Tempest fonts. Through ex-
periments, we have investigated and evaluated the effectiveness of the
Tempest fonts. Furthermore, we propose a new measure based on a sim-
ilar approach to prevent successful Tempest attacks. While Kuhn and
Anderson use Fourier transformation as a low-pass filter, our approach
uses a Gaussian filter in addition to Fourier transformation. Our exper-
imental results show that this approach is more effective.

1 Introduction

The unintentional emanation of physical energy is a major threat to privacy. Ad-
versaries can eavesdrop on sensitive information via electromagnetic emanation
from computers or their peripherals. Tempest refers to the techniques, investi-
gations, and studies of compromising emanations and their application to eaves-
dropping, as well as to the information leakage through emanations. Tempest has
been a concern regarding computer security in military and governmental insti-
tutions for a long time; however, much of the information gathered on Tempest
technologies has not been publicly disclosed.

Several Tempest test receivers are now available to non governmental insti-
tutions, and a few researchers have published details of their experiments [1,
2, 4, 8, 10]. These papers have verified that Tempest is a potential problem and
warn that it is a serious issue. Kuhn and Anderson [6, 8] have proposed a coun-
termeasure; the use of a filtered fonts with spectral characteristics. They claim
that their fonts, called the Tempest fonts, significantly reduces the effective range
of eavesdropping at a negligible cost in image quality and prevents adversaries
obtaining on-screen information.

In this paper, we report on our experiments on the reconstruction of images
containing text written in the Tempest fonts and verify the effectiveness in a
particular situation. We also show that the fonts do not provide sufficient secu-
rity in certain attack models where the adversary uses sophisticated equipment.
Furthermore, we propose and discuss an alternative to the Tempest fonts. Kuhn
and Anderson use only Fourier transformation as a low-pass filter. We use a
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Gaussian filter in addition to Fourier transformation. The reader is referred to
[5] for more detail on Fourier transformation and Gaussian filters.

In the following sections, we discuss our experiments, compare the two ap-
proaches, and show that our method is more effective in certain cases.

2 Tempest Fonts

Kuhn and Anderson [6, 8] performed experiments on recovering PC screen images
using an ESL model 400 Tempest monitoring receiver and a dipole antenna. They
developed the Tempest fonts to protect privacy from the Tempest threat, and
their Tempest fonts package can be downloaded at [7]. The fonts contained in
the package is a filtered and anti-aliased version of the Courier font.

Kuhn and Anderson claim that the Tempest fonts provide adequate security
in a certain situation at less cost than preparing perfectly shielded devices and
peripherals.

3 Outline of Experiments

3.1 Equipment

In our experiments, we used an FSET22 receiver and FrameControl ver. 4.24
image processing software. The FSET22 specifications are shown in Table 1.
FrameControl can process the signal from the FSET22 at 256 frames/3 s. We
used an Anritsu MP666A logarithm periodic antenna (20 ∼ 2000 MHz), an
Anritsu MA2601B/C near magnetic field probe (5 ∼ 1000 MHz) and a TOKIN
EIP-100 injection probe (80 KHz ∼ 30 MHz).

The effectiveness of image processing is especially important. Our image pro-
cessing software could create an averaged image from up to 256 frames. The soft-
ware we used has almost the same capabilities as Adobe Photoshop, and it works
in real time. Note that our equipment is not classified and can be purchased from
a commercial firm.

3.2 Target Machines

The targets in our experiments were an IBM ThinkPad S30 notebook PC (de-
noted as IBM), a SONY VAIO PCG-V505 notebook PC (denoted as VAIO),
and a NANAO FlexScan 77F 21-inch CRT (denoted as CRT). The CRT was
connected to the VGA connector of the VAIO. We tried to reconstruct the dis-
play image of each target, whose screen displayed the cur-13x24m-a.gif character
table (Fig. 1).

3.3 Attack Scenarios and Experimental Design

We performed three experiments corresponding to attacks using a near magnetic
field probe, an antenna, or an injection probe as follows.
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Table 1. FSET22 Specifications.

Frequency range 100 Hz ∼ 22 GHz

Frequency resolution 0.1 Hz

Bandwidth 10 Hz ∼ 500 MHz in steps of 1/2/5

Average noise level < -142 dBm (1 MHz)

Fig. 1. Tempest fonts (cur-13x24m-a.gif).

1. eavesdroppers embed a near magnetic field probe in the vicinity of the target,
2. eavesdroppers try to catch emanation outside of the room in which the target

machine is located,
3. eavesdroppers try to receive signals transmitted by the power supply line.

The results of each experiment are described in Sections 4.1, 4.2, and 4.3,
respectively.

3.4 Tempest Procedure

Knowing the synchronous frequency of a target significantly helps an eavesdrop-
per reconstruct the display image via electromagnetic emanation. An eavesdrop-
per who does not know the frequency can easily guess it from the standard
parameters of the Video Electronics Standards Association (VESA) [12]. In this
work, we measured the synchronous frequency of each target in the experiments
using a near magnetic field probe (see Section 4.1). The experimental procedure
was as follows.

[Step 1] Search for the source location of the electromagnetic wave emission.
[Step 2] Adjust the parameters for the received frequency.
[Step 3] Adjust the parameters for the synchronous frequency.
[Step 4] Apply image processing.
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Fig. 2. Reconstructed images: (left) IBM, (right) CRT.

We repeated these steps until we got a clear reconstruction of the target dis-
play. Measurement of the synchronous frequency using a probe is very important
in Tempest. Our instruments were accurate to within six figures below a decimal
point with regard to both the horizontal and vertical frequencies of the VGA
signal. Since the synchronous frequency is a unique value for each PC, if we know
the correct parameters for the synchronous frequency, we do not have to carry
out Step 3. We show both the horizontal and vertical synchronous frequencies for
each of our targets in Table 2. Since the CRT was connected to the VAIO VGA
connector, the synchronous frequencies of the CRT and VAIO were identical.

4 Experiments

4.1 Experimental Results: Near Magnetic Field Probe

In this experiment, we placed the near magnetic field probe very close to the
targets (the IBM, VAIO, and CRT). Reconstructed images (for the IBM and
CRT) obtained by averaging 128 frames are shown in Fig. 2. The reconstructed
image for the VAIO was almost the same as that for the IBM, so we do not show
it in Fig. 2. The parameter values that provided the best results for the IBM and
CRT are listed in Table 3. We can distinguish many characters in the Tempest
fonts from the images in Fig. 2; this led us to conclude that we can obtain the
semantics of text (natural language) written in the Tempest fonts.
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Table 2. Synchronous frequency of each target.

Horizontal frequency [MHz] Vertical frequency [KHz]

IBM 48.530874 60.211965

VAIO 48.338321 59.973150

CRT 48.338321 59.973150

Table 3. Parameter values used to reconstruct images using the near magnetic field
probe.

Frequency [MHz] Bandwidth [MHz]

IBM 461.2 20.0

CRT 57.4 20.0

4.2 Experimental Results: Antenna

A Tempest attack using an antenna is considered a more realistic attack than
one using a near magnetic field probe. In our experiment, the antenna was placed
4 m from the target. Since we could not successfully reconstruct the IBM image,
we show only the VAIO and CRT results in Fig. 3. The parameters in this case
are shown in Table 4.

4.3 Experimental Results: Injection Probe

Tempest attacks using injection probes are more realistic still than Tempest
attacks using an antenna. An injection probe looks like a clothespin and can be
clipped onto a cable to receive electromagnetic emanation. The attenuation of the
emanation of an electromagnetic wave depends on the distance from the target,
and is very low for conduction emanation from a power supply line compared
with direct emanation from the target to air. In this experiment, we set the
probe 30 cm from the target and on an extended cable at over 30 m from the
target. In both cases we succeeded in obtaining images from the CRT, and there
was little difference between the reconstructed images. That is, we could read
the Tempest font characters from the CRT (Table 5 and Fig. 4) as we could in
the experiment using a near magnetic field probe (Section 4.1). On the other
hand, we could not reconstruct the images at all from the IBM and VAIO. We
believe that the reconstruction failed in these cases because of the AC adapter.

4.4 Conclusions Based on Experiment Results

We verified that character images written in the Tempest fonts are much more
difficult to recover than those written in a normal font, such as a 10-point ter-
minal font, when an attacker uses an obsolete Tempest receiver. On the other
hand, the improvements made in Tempest receivers have greatly reduced the ef-
fectiveness of the Tempest fonts. We could clearly reconstruct character images
by receiving electromagnetic emanation from the target on which the Tempest
fonts was displayed in our experiments. Therefore, while the Tempest fonts can
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Table 4. Parameter values used to reconstruct images using an antenna.

Frequency [MHz] Bandwidth [MHz]

VAIO 844.8 20.0

CRT 973.2 20.0

Fig. 3. Reconstructed image of Tempest font averaged from 128 frames obtained using
an antenna at a distance of 4 m: (left) VAIO, (right) CRT.

prevent eavesdroppers from recovering character images under certain situations,
such as when an adversary has only obsolete Tempest receivers, it is no longer
an effective measure in more realistic environments.

Table 6 summarizes our experiment results. In Table 6, “TF” stands for
the Tempest font, “Normal” stands for a 10-point terminal font (normal font),
“readable” means we could recognize 80% of the characters, “nearly readable”
means we could recognize 50% of the characters, and “non-readable” means
that we could not recognize any characters. Here, our conclusions regarding
readability are based on a subjective evaluation.

We found that reconstructing the Tempest fonts was easier than reconstruct-
ing the normal font when we used an antenna. Since the normal font consists
of narrow lines, the high frequency spectrum generated from these lines cre-
ates sharp spikes on carrier waves. Such sharp spikes on electromagnetic waves
are easily attenuated after emanating through air, making it difficult for us to
distinguish the sharp spikes from air noise. Therefore, it was more difficult to
reconstruct images written in the normal font in this case.
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Table 5. Parameter values used to reconstruct images using an injection probe.

Frequency [MHz] Bandwidth [MHz]

CRT 23.8 20.0

Table 6. Summary of experiments.

Near magnetic field probe Antenna Injection probe
TF Normal TF Normal TF Normal

VAIO readable readable readable non-readable non-readable non-readable

IBM readable readable non-readable non-readable non-readable non-readable

CRT readable readable nearly readable non-readable readable readable

Fig. 4. Reconstructed image of Tempest font averaged from 128 frames obtained using
an injection probe. The probe was set about 30 m from the CRT.

4.5 The Plausibility of Attacks

Radio frequency emanation decreases in proportion to the square of the distance
from the target, and other radio frequencies from electric devices also interfere
with radio frequency emanation. Therefore, we believe that an attack made by
attempting to receive the radio frequency at a distance is unlikely to succeed.

On the other hand, power supply lines may extend into the building structure
and eavesdroppers can use these lines to receive signals from anywhere in the
same building. Hence, attacks by receiving the radio frequency through power
supply lines is the most plausible threat.

From Table 6 and Figs. 2 ∼ 4, we see that the reality of an attack scenario
(as explained in Section 3.3) is inversely proportional to the quality of the re-
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Fig. 5. Enlarged image of Tempest fonts.

Fig. 6. Another processed reconstructed image of Tempest fonts. (We used the same
image as in the left figure of Fig. 2.)

constructed images. An attack using near magnetic field probes is the most dan-
gerous in terms of the reconstructed image quality, so countermeasures against
Tempest attacks should be evaluated in terms of their effectiveness against at-
tacks using near magnetic field probes. In Section 5, we evaluate an improvement
made to the Tempest fonts in experiments where we used only near magnetic
field probes.
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5 Improvement of the Tempest Font

5.1 Basic Idea

The Tempest fonts is produced by applying Fourier transformation to the source
font image and removing the top 30% of the horizontal frequency spectrum [7].

The high frequency spectrum creates large spikes in the carrier waves during
the digital-analog conversion process. Such large spikes are easily distinguished
from air noise. Therefore, the high frequency spectrum is valuable information
that eavesdroppers can use to reconstruct the target display image. Because the
high frequency spectrum provides eavesdroppers with a significant clue, removing
it is an effective Tempest countermeasure. This is the basic idea underlying the
Tempest fonts developed by Kuhn and Anderson.

5.2 Our Perspective

Through our experiments, we found another aspect of the Tempest fonts that
makes recovery of the display image difficult. We explain our observation and
this effect of the Tempest fonts in the following.

Figure 5 is an enlarged image of the Tempest fonts. We can recognize block
noise (dither) around the characters in this figure. We applied another filter
(“black/white reverse” and “edge emphasis”: a function of FrameControl) to
the reconstructed image of the Tempest fonts and emphasized the area around
the character edges. The resulting image of the Tempest fonts can be perfectly
reconstructed from the block noise. The block noise disrupts character forms that
are made of curves, but not the character forms made of straight lines. Since the
Tempest fonts produces block noise, it makes it easy to read characters made of
straight lines but hard to read characters made of curves.

Although Kuhn and Anderson show the result that an eavesdropper com-
pletely failed to reconstruct images in [8], we were able to sufficiently reconstruct
images from which we could read characters by reconstructing block noise. How-
ever, since the characters reconstructed from Tempest font are hard to recognize,
we conclude that the Tempest font is an effective means of protecting privacy in
certain situations.

5.3 Our Improvement

Since the generation of block noise reduces the resistance to Tempest, we propose
a method to decrease block noise. Our fonts is produced from the Tempest fonts
by applying a Gaussian filter. (See [5] for detailed information on Gaussian
filters.) A Gaussian filter basically makes images flat and smooth. It does not
lead to a high frequency spectrum because it causes a high correlation between
adjacent pixels.

We had to find the best parameter values for the Gaussian filter because
excessive values would substantially lower the display visibility. As parameters,
we used a radius of 3.0 pixels and a threshold of 25.0 pixels. Figure 7 shows
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Fig. 7. Our filtered fonts.

our filtered fonts. Compared to the Tempest fonts (Fig. 1), our filtered fonts is
grayer and characters like " are harder to read.

5.4 Comparison and Discussion

We compare reconstructed images of the Tempest fonts and our filtered fonts
(IBM, using a near magnetic field probe) in Fig. 8. Our fonts is clearly harder to
read than the Tempest fonts. To confirm this subjective observation, though, we
carried out the following experiment. We ask eight testees to look at Fig. 6 and
identify as many characters as they could. The testees correctly identified almost
80% of all the characters in the Tempest font; in contrast, they made a correct
identification of close to 0% for our filtered font. Furthermore, the number of
attempted answers for our filtered font was 83% of that for the Tempest fonts.
This experiment thus objectively confirmed our subjective evaluation.

Our experiments verified the effectiveness of the Tempest fonts in a certain
situation (when an eavesdropper is using an obsolete receiver); however, the
Tempest fonts is not a sufficient countermeasure against an eavesdropper using
more sophisticated tools.

The characters of our filtered fonts, though, are dim, ambiguous, and weak
in contrast. Thus, fine characters and symbols are hard to read. This makes our
filtered fonts less user-friendly, especially for the elderly. Improved readability is
needed for practical use.

We show an enlarged image of our filtered fonts in Fig. 9. From this image,
we found that noise dots are uniformly scattered all over the background. Such
noise dots are reconstructed in the image reconstruction process. These lower the
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Fig. 8. Best reconstructed image of (left) Tempest fonts and (right) our filtered fonts.
(IBM, near-magnetic-field probe).

readability of our filtered fonts in the reconstructed image, making it impossible
to obtain a clear reconstructed image.

6 Conclusion

Hardware-based countermeasures against Tempest, such as shields, perform well
but are inflexible and expensive. Software-based countermeasures, such as the
Tempest fonts, allow the emanation of electromagnetic waves, but prevent eaves-
droppers obtaining screen information via the received waves. Furthermore, these
countermeasures are flexible and inexpensive. Therefore, software-based counter-
measures are particularly promising.

The Tempest fonts was proposed as an inexpensive and easy to implement
countermeasure against Tempest threats. Unfortunately, our results indicate that
the Tempest fonts does not provide sufficient security in an attack scenario
where the adversary possesses up-to-date Tempest receivers. Current Tempest
receivers are unclassified and can be purchased by anybody. Removing 30% of
the high-frequency spectrum is no longer an adequate security measure against
eavesdroppers with such sophisticated receivers. In this paper, though, we have
shown that the effectiveness of the Tempest fonts can be improved by applying
a Gaussian filter.

It is important, however, to consider the trade-off between effectiveness
against Tempest attacks and the font visibility. Also, the parameter values that
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Fig. 9. Enlarged image of our filtered fonts.

should be used in the Fourier transformation and Gaussian filter differ depend-
ing on the type and size of the source font and the pertinent environment. Our
future work will be aimed at solving these problems.
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